Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

被引:20
作者
Gudmundsson, Vidar [1 ]
Abdullah, Nzar Rauf [2 ,3 ]
Sitek, Anna [4 ,5 ]
Goan, Hsi-Sheng [6 ,7 ,8 ]
Tang, Chi-Shung [9 ]
Manolescu, Andrei [4 ]
机构
[1] Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland
[2] Univ Sulaimani, Coll Sci, Phys Dept, Kurdistan Region, Iraq
[3] Komar Univ Sci & Technol, Komar Res Ctr, Sulaimani, Kurdistan Regio, Iraq
[4] Reykjavik Univ, Sch Sci & Engn, Menntavegur 1, IS-101 Reykjavik, Iceland
[5] Wroclaw Univ Sci & Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
[6] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[7] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
[8] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 10617, Taiwan
[9] Natl United Univ, Dept Mech Engn, Miaoli 36003, Taiwan
关键词
Current correlations; Electronic transport in mesoscopic systems; Cavity quantum electrodynamics; Electro-optical effects; STEADY-STATE; SYSTEMS; NOISE;
D O I
10.1016/j.physleta.2018.04.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1672 / 1678
页数:7
相关论文
共 39 条
[1]   Charge transport through single molecules, quantum dots and quantum wires [J].
Andergassen, S. ;
Meden, V. ;
Splettstoesser, J. ;
Schoeller, H. ;
Wegewijs, M. R. .
NANOTECHNOLOGY, 2010, 21 (27)
[2]   Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua [J].
Bruhat, L. E. ;
Viennot, J. J. ;
Dartiailh, M. C. ;
Desjardins, M. M. ;
Kontos, T. ;
Cottet, A. .
PHYSICAL REVIEW X, 2016, 6 (02)
[3]   THEORETICAL INVESTIGATION OF NOISE CHARACTERISTICS OF DOUBLE-BARRIER RESONANT-TUNNELING SYSTEMS [J].
CHEN, LY ;
TING, CS .
PHYSICAL REVIEW B, 1991, 43 (05) :4534-4537
[4]   Ground State Electroluminescence [J].
Cirio, Mauro ;
De Liberato, Simone ;
Lambert, Neill ;
Nori, Franco .
PHYSICAL REVIEW LETTERS, 2016, 116 (11)
[5]   Quantum vacuum properties of the intersubband cavity polariton field [J].
Ciuti, C ;
Bastard, G ;
Carusotto, I .
PHYSICAL REVIEW B, 2005, 72 (11)
[6]   Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters [J].
Ciuti, Cristiano ;
Carusotto, Iacopo .
PHYSICAL REVIEW A, 2006, 74 (03)
[7]   On the Steady State Correlation Functions of Open Interacting Systems [J].
Cornean, H. D. ;
Moldoveanu, V. ;
Pillet, C-A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) :261-295
[8]   Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena [J].
Cottet, Audrey ;
Dartiailh, Matthieu C. ;
Desjardins, Matthieu M. ;
Cubaynes, Tino ;
Contamin, Lauriane C. ;
Delbecq, Matthieu ;
Viennot, Jeremie J. ;
Bruhat, Laure E. ;
Doucot, Benoit ;
Kontos, Takis .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (43)
[9]   Extracavity quantum vacuum radiation from a single qubit [J].
De Liberato, S. ;
Gerace, D. ;
Carusotto, I. ;
Ciuti, C. .
PHYSICAL REVIEW A, 2009, 80 (05)
[10]   Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip [J].
Delbecq, M. R. ;
Schmitt, V. ;
Parmentier, F. D. ;
Roch, N. ;
Viennot, J. J. ;
Feve, G. ;
Huard, B. ;
Mora, C. ;
Cottet, A. ;
Kontos, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)