Emergence of the Unconventional Type-II Nambu-Goldstone Modes with Topological Origin in Bose Superfluids

被引:3
作者
Pan, Jian-Song [1 ,2 ,3 ]
Liu, W. Vincent [1 ,2 ,4 ,5 ,6 ]
Liu, Xiong-Jun [3 ,5 ,6 ,7 ,8 ]
机构
[1] Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, TD Lee Inst, Shanghai 200240, Peoples R China
[3] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[4] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[5] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[7] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[8] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
REALIZATION; SEMIMETAL;
D O I
10.1103/PhysRevLett.125.260402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Nambu-Goldstone (NG) modes in a nonrelativistic system can be classified into two types from their characteristic features: being of either an odd (type I) or an even (type II) power energy-momentum dispersion. Conventionally, the type-II NG modes may universally arise from spontaneous breaking of noncommutative symmetry pairs. Here, we predict a novel type of quadratically dispersed NG modes that emerges in mixed s and p band Bose superfluids in an optical lattice and, unlike the conventional type-II NG modes, cannot be solely interpreted with the celebrated symmetry-based argument. Instead, we show that the existence of such modes has a profound connection to the topological transition on projective complex order-parameter space. The detection scheme is also proposed. Our Letter reveals a new universal mechanism for emergence of type-II NG modes, which bridges intrinsically the Landau symmetry-breaking and topological theories.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms [J].
Aidelsburger, M. ;
Lohse, M. ;
Schweizer, C. ;
Atala, M. ;
Barreiro, J. T. ;
Nascimbene, S. ;
Cooper, N. R. ;
Bloch, I. ;
Goldman, N. .
NATURE PHYSICS, 2015, 11 (02) :162-166
[2]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[3]   On the theory of ferromagnetism [J].
Bloch, F. .
ZEITSCHRIFT FUR PHYSIK, 1930, 61 (3-4) :206-219
[4]   Classification of topological quantum matter with symmetries [J].
Chiu, Ching-Kai ;
Teo, Jeffrey C. Y. ;
Schnyder, Andreas P. ;
Ryu, Shinsei .
REVIEWS OF MODERN PHYSICS, 2016, 88 (03)
[5]  
Cooper NR, 2019, REV MOD PHYS, V91, DOI [10.1103/RevModPhys.91.015005, 10.1103/revmodphys.91.015005]
[6]   BROKEN SYMMETRIES [J].
GOLDSTONE, J ;
SALAM, A ;
WEINBERG, S .
PHYSICAL REVIEW, 1962, 127 (03) :965-+
[7]  
GOLO VL, 1993, ZH EKSP TEOR FIZ+, V103, P857
[8]  
Haar D. Ter, 2013, COLLECTED PAPERS LD, P193
[9]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[10]   Three-Dimensional Topological Insulators [J].
Hasan, M. Zahid ;
Moore, Joel E. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 2, 2011, 2 :55-78