Some bounds on the p-domination number in trees

被引:18
作者
Blidia, Mostafa
Chellali, Mustapha
Volkmann, Lutz
机构
[1] Univ Blida, Dept Math, Blida, Algeria
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
p-domination number; p-dependence number; bipartite graphs;
D O I
10.1016/j.disc.2006.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a positive integer and G = (V, E) a graph. A subset S of V is a p-dominating set if every vertex of V - S is dominated at least p times, and S is a p-dependent set of G if the subgraph induced by the vertices of S has maximum degree at most p - 1. The minimum cardinality, of a p-dominating set a of G is the p-domination number gamma(p) (G) and the maximum cardinality of a p-dependent set of G is the p-dependence number beta(p) (G). For every positive integer p >= 2, we show that for a bipartite graph G, gamma(p) (G) is bounded above by (vertical bar V vertical bar + vertical bar Y-p vertical bar)/2, where Y-p is the set of vertices of G of degree at most p - 1, and for every tree T, gamma(p)(T) is bounded below by beta(p-1)(T). Moreover, we characterize the trees achieving equality in each bound. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2031 / 2037
页数:7
相关论文
共 11 条
[1]  
Blidia M, 2005, AUSTRALAS J COMB, V33, P317
[2]  
Caro Y., 1990, Int. J. Math. Math. Sci., V13, P205, DOI 10.1155S016117129000031X////
[3]  
CHARTRAND G, 1996, GRAPHS DIGRAPHS
[4]   ON A CONJECTURE OF FINK AND JACOBSON CONCERNING KAPPA-DOMINATION AND KAPPA-DEPENDENCE [J].
FAVARON, O .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (01) :101-102
[5]  
Fink J., 1985, GRAPH THEORY APPL AL, P283
[6]  
Fink J. F., 1985, Graph theory with applications to algorithms and computer science, P301
[7]  
Gallai T., 1959, ANN U SCI BUDAP, V2, P133
[8]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[9]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[10]  
Konig D., 1931, Mat. Lapok, V38, P116