A microscopic convexity principle for nonlinear partial differential equations

被引:77
作者
Bian, Baojun [2 ]
Guan, Pengfei [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
BOUNDARY-VALUE-PROBLEMS; ELLIPTIC-EQUATIONS; WEINGARTEN CURVATURE; MEAN-CURVATURE; MINKOWSKI; HYPERSURFACES; SURFACES; FLOW;
D O I
10.1007/s00222-009-0179-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study microscopic convexity property of fully nonlinear elliptic and parabolic partial differential equations. Under certain general structure condition, we establish that the rank of Hessian a double dagger (2) u is of constant rank for any convex solution u of equation F(a double dagger (2) u,a double dagger u,u,x)=0. The similar result is also proved for parabolic equations. Some of geometric applications are also discussed.
引用
收藏
页码:307 / 335
页数:29
相关论文
共 29 条
[1]  
Aleksandrov AD., 1962, Am. Math. Soc. Transl, V21, P341
[2]  
Alexandrov A. D., 1938, MAT SBORNIK, V3, P27
[3]  
ALEXANDROV AD, 1939, REC MATH NS MAT SBOR, V5, P309
[4]   Convex viscosity solutions and state constraints [J].
Alvarez, O ;
Lasry, JM ;
Lions, PL .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (03) :265-288
[5]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[6]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[8]   CONVEXITY PROPERTIES OF SOLUTIONS TO SOME CLASSICAL VARIATIONAL-PROBLEMS [J].
CAFFARELLI, LA ;
SPRUCK, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (11) :1337-1379
[9]   CONVEXITY OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (02) :431-456
[10]   A constant rank theorem for solutions of fully nonlinear elliptic equations [J].
Caffarelli, Luis ;
Guan, Pengfei ;
Ma, Xi-Nan .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (12) :1769-1791