Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers

被引:126
作者
Stratakis, Emmanuel [1 ,2 ,3 ]
Savva, Kyriaki [3 ]
Konios, Dimitrios [1 ,2 ]
Petridis, Constantinos [1 ,2 ]
Kymakis, Emmanuel [1 ,2 ]
机构
[1] Technol Educ Inst TEI Crete, Ctr Mat Technol & Photon, Iraklion, Crete, Greece
[2] Technol Educ Inst TEI Crete, Dept Elect Engn, Sch Engn, Iraklion, Crete, Greece
[3] Univ Crete, IESL, Fdn Res & Technol Hellas FORTH, Dept Mat Sci & Technol, Iraklion, Crete, Greece
关键词
POLYMER SOLAR-CELLS; LIGHT-EMITTING-DIODES; ELECTRON-EXTRACTION LAYERS; CARBON NANOTUBES; GRAPHITE OXIDE; SMALL-MOLECULE; PERFORMANCE; DEVICES; FUNCTIONALIZATION; DERIVATIVES;
D O I
10.1039/c4nr01539h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile, fast, non-destructive and roll-to-roll compatible photochemical method for simultaneous partial reduction and doping of graphene oxide (GO) films through ultraviolet laser irradiation in the presence of a Cl-2 precursor gas is demonstrated. The photochemical chlorinated GO-Cl films were fully characterized by XPS and Raman measurements, in which grafting of chloride to the edges and the basal plane of GO was confirmed. By tuning the laser exposure time, it is possible to control the doping and reduction levels and therefore to tailor the work function (WF) of the GO-Cl layers from 4.9 eV to a maximum value of 5.23 eV. These WF values match with the HOMO level of most polymer donors employed in OPV devices. Furthermore, high efficiency poly(2,7-carbazole) derivative (PCDTBT): fullerene derivative (PC71BM) based OPVs with GO-Cl as the hole transporting layer (HTL) were demonstrated with a power conversion efficiency (PCE) of 6.56% which is 17.35% and 19.48% higher than that of the pristine GO and PEDOT: PSS based OPV devices, respectively. The performance enhancement was attributed to more efficient hole transportation due to the energy level matching between the GO-Cl and the polymer donor.
引用
收藏
页码:6925 / 6931
页数:7
相关论文
共 49 条
[1]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[2]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[3]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[4]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[5]   Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells [J].
Chiu, Mao-Yuan ;
Jeng, U-Ser ;
Su, Chiu-Hun ;
Liang, Keng S. ;
Wei, Kung-Hwa .
ADVANCED MATERIALS, 2008, 20 (13) :2573-+
[6]   How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance [J].
Chochos, Christos L. ;
Choulis, Stelios A. .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (10) :1326-1414
[7]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[8]   Improvement of Interfacial Contacts for New Small-Molecule Bulk-Heterojunction Organic Photovoltaics [J].
Garcia, Andres ;
Welch, Gregory C. ;
Ratcliff, Erin L. ;
Ginley, David S. ;
Bazan, Guillermo C. ;
Olson, Dana C. .
ADVANCED MATERIALS, 2012, 24 (39) :5368-5373
[9]  
Greiner MT, 2012, NAT MATER, V11, P76, DOI [10.1038/NMAT3159, 10.1038/nmat3159]
[10]   High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells [J].
Hains, Alexander W. ;
Marks, Tobin J. .
APPLIED PHYSICS LETTERS, 2008, 92 (02)