A NOTE ON THE NONLINEAR LANDWEBER ITERATION

被引:7
作者
Hanke, Martin [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
关键词
Discrepancy principle; Landweber iteration; Monotonicity rule; Nonlinear ill-posed problems; ILL-POSED PROBLEMS;
D O I
10.1080/01630563.2014.884586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We reconsider the Landweber iteration for nonlinear ill-posed problems. It is known that this method becomes a regularization method in the case when the iteration is terminated as soon as the residual drops below a certain multiple of the noise level in the data. So far, all known estimates of this factor are greater than two. Here we derive a smaller factor that may be arbitrarily close to one depending on the type of nonlinearity of the underlying operator equation.
引用
收藏
页码:1500 / 1510
页数:11
相关论文
共 11 条
[1]  
ALIFANOV OM, 1979, SOV MATH DOKL, V20, P1133
[2]  
[Anonymous], 1966, Soviet Mathematics Doklady
[3]  
DEFRISE M, 1987, ADV ELECTRON EL PHYS, P261
[4]  
Engl H. W., 1996, REGULARIZATION INVER
[5]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[6]  
Hamarik U., 1999, DIFFERENTIAL INTEGRA, P15
[7]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[8]  
Kaltenbacher B, 2008, RADON SER COMPUT APP, V6, P1, DOI 10.1515/9783110208276
[9]   UNIFORM APPROACH TO GRADIENT METHODS FOR LINEAR OPERATOR EQUATIONS [J].
MCCORMICK, SF ;
RODRIGUE, GH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 49 (02) :275-285
[10]  
Rumyantsev S. V., 1988, Extremal Methods for Solving Ill-Posed Problems