共 50 条
Exponentially Stagnation Point Flow of Non-Newtonian Nanofluid over an Exponentially Stretching Surface
被引:2
|作者:
Nadeem, S.
[1
]
Sadiq, M. A.
[2
]
Choi, Jung-il
[3
]
Lee, Changhoon
[3
]
机构:
[1] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
[2] KFUPM, Community Coll Dammam, Dept Math, Thuwal, Saudi Arabia
[3] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
基金:
新加坡国家研究基金会;
关键词:
stagnation point;
Jeffrey nanofluid;
porous;
stretching surface;
boundary layer flow;
series solutions;
exponential stretching;
BOUNDARY-LAYER-FLOW;
HOMOTOPY ANALYSIS METHOD;
MIXED CONVECTION FLOW;
MICROPOLAR FLUID;
SERIES SOLUTIONS;
MASS-TRANSFER;
EQUATIONS;
D O I:
10.1515/ijnsns-2011-0081
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
The steady stagnation point flow of Jeffrey nanofluid over an exponential stretching surface under the boundary layer assumptions is discussed analytically. The transport equations include the effects of Brownian motion and thermophoresis. The boundary layer coupled partial differential equations of Jeffrey nanofluid are simplified with the help of suitable semi-similar transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions have been discussed by plotting h-curve. The expressions for velocity, temperature and nano particle volume fraction are computed for some values of the parameters namely, Jeffrey relaxation and retardation parameters B and.1, stretching/ shrinking parameter A, suction injection parameter vw, Lewis number Le, the Brownian motion Nb, thermophoresis parameter Nt and Prandtl number Pr.
引用
收藏
页码:171 / 180
页数:10
相关论文