Building High Throughput Permissioned Blockchain Fabrics: Challenges and Opportunities

被引:16
作者
Gupta, Suyash [1 ]
Hellings, Jelle [1 ]
Rahnama, Sajjad [1 ]
Sadoghi, Mohammad [1 ]
机构
[1] Univ Calif Davis, Exploratory Syst Lab, Dept Comp Sci, Davis, CA 95616 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2020年 / 13卷 / 12期
关键词
IMPOSSIBILITY; DATABASE;
D O I
10.14778/3415478.3415565
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since the introduction of Bitcoin-the first widespread application driven by blockchains-the interest in the design of blockchain-based applications has increased tremendously. At the core of these applications are consensus protocols that securely replicate client requests among all replicas, even if some replicas are Byzantine faulty. Unfortunately, these consensus protocols typically have low throughput, and this lack of performance is often cited as the reason for the slow wider adoption of blockchain technology. Consequently, many works focus on designing more efficient consensus protocols to increase throughput of consensus. We believe that this focus on consensus protocols only explains part of the story. To investigate this belief, we raise a simple question: Can a well-crafted system using a classical consensus protocol outperform systems using modern protocols? In this tutorial, we answer this question by diving deep into the design of blockchain systems. Further, we take an in-depth look at the theory behind consensus, which can help users select the protocol that best-fits their requirements. Finally, we share our vision of high-throughput blockchain systems that operate at large scales.
引用
收藏
页码:3441 / 3444
页数:4
相关论文
共 45 条
[1]  
Abraham I., 2018, SYNCHRONOUS BYZANTIN
[2]   CAPER: A Cross-Application Permissioned Blockchain [J].
Amiri, Mohammad Javad ;
Agrawal, Divyakant ;
El Abbadi, Amr .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (11) :1385-1398
[3]   Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains [J].
Androulaki, Elli ;
Barger, Artem ;
Bortnikov, Vita ;
Cachin, Christian ;
Christidis, Konstantinos ;
De Caro, Angelo ;
Enyeart, David ;
Ferris, Christopher ;
Laventman, Gennady ;
Manevich, Yacov ;
Muralidharan, Srinivasan ;
Murthy, Chet ;
Binh Nguyen ;
Sethi, Manish ;
Singh, Gari ;
Smith, Keith ;
Sorniotti, Alessandro ;
Stathakopoulou, Chrysoula ;
Vukolic, Marko ;
Cocco, Sharon Weed ;
Yellick, Jason .
EUROSYS '18: PROCEEDINGS OF THE THIRTEENTH EUROSYS CONFERENCE, 2018,
[4]  
[Anonymous], 2002, TECHNICAL REPORT
[5]   The Next 700 BFT Protocols [J].
Aublin, Pierre-Louis ;
Guerraoui, Rachid ;
Knezevic, Nikola ;
Quema, Vivien ;
Vukolic, Marko .
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2015, 32 (04)
[6]   RBFT: Redundant Byzantine Fault Tolerance [J].
Aublin, Pierre-Louis ;
Ben Mokhtar, Sonia ;
Quema, Vivien .
2013 IEEE 33RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2013, :297-306
[7]   State Machine Replication for the Masses with BFT-SMART [J].
Bessani, Alysson ;
Sousa, Joao ;
Alchieri, Eduardo E. P. .
2014 44TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN), 2014, :355-362
[8]   ARGO upper salinity measurements: Perspectives for L-band radiometers calibration and retrieved sea surface salinity validation [J].
Boutin, J ;
Martin, N .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (02) :202-206
[9]   CAP Twelve Years Later: How the "Rules" Have Changed [J].
Brewer, Eric .
COMPUTER, 2012, 45 (02) :23-29
[10]   Practical byzantine fault tolerance and proactive recovery [J].
Castro, M ;
Liskov, B .
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2002, 20 (04) :398-461