Systematic variational method for statistical nonlinear state and parameter estimation

被引:26
作者
Ye, Jingxin [1 ]
Rey, Daniel [1 ]
Kadakia, Nirag [1 ]
Eldridge, Michael [1 ]
Morone, Uriel I. [1 ]
Rozdeba, Paul [1 ]
Abarbanel, Henry D. I. [1 ,2 ]
Quinn, John C. [3 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
[3] Intellisis Corp, San Diego, CA 92121 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
DATA ASSIMILATION; ALGORITHM;
D O I
10.1103/PhysRevE.92.052901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In statistical data assimilation one evaluates the conditional expected values, conditioned on measurements, of interesting quantities on the path of a model through observation and prediction windows. This often requires working with very high dimensional integrals in the discrete time descriptions of the observations and model dynamics, which become functional integrals in the continuous-time limit. Two familiar methods for performing these integrals include (1) Monte Carlo calculations and (2) variational approximations using the method of Laplace plus perturbative corrections to the dominant contributions. We attend here to aspects of the Laplace approximation and develop an annealing method for locating the variational path satisfying the Euler-Lagrange equations that comprises the major contribution to the integrals. This begins with the identification of the minimum action path starting with a situation where the model dynamics is totally unresolved in state space, and the consistent minimum of the variational problem is known. We then proceed to slowly increase the model resolution, seeking to remain in the basin of the minimum action path, until a path that gives the dominant contribution to the integral is identified. After a discussion of some general issues, we give examples of the assimilation process for some simple, instructive models from the geophysical literature. Then we explore a slightly richer model of the same type with two distinct time scales. This is followed by a model characterizing the biophysics of individual neurons.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models
    Armstrong, Matthew J.
    Beris, Antony N.
    Wagner, Norman J.
    [J]. AICHE JOURNAL, 2017, 63 (06) : 1937 - 1958
  • [22] Variational data assimilation for parameter estimation: application to a simple morphodynamic model
    Polly J. Smith
    Sarah L. Dance
    Michael J. Baines
    Nancy K. Nichols
    Tania R. Scott
    [J]. Ocean Dynamics, 2009, 59 : 697 - 708
  • [23] Variational data assimilation for parameter estimation: application to a simple morphodynamic model
    Smith, Polly J.
    Dance, Sarah L.
    Baines, Michael J.
    Nichols, Nancy K.
    Scott, Tania R.
    [J]. OCEAN DYNAMICS, 2009, 59 (05) : 697 - 708
  • [24] A direct filter method for parameter estimation
    Archibald, Richard
    Bao, Feng
    Tu, Xuemin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [25] A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation
    Stroud, Jonathan R.
    Katzfuss, Matthias
    Wikle, Christopher K.
    [J]. MONTHLY WEATHER REVIEW, 2018, 146 (01) : 373 - 386
  • [26] Mechanical state estimation with a Polynomial-Chaos-Based Statistical Finite Element Method
    Narouie, Vahab
    Wessels, Henning
    Cirak, Fehmi
    Römer, Ulrich
    [J]. Computer Methods in Applied Mechanics and Engineering, 2025, 441
  • [27] Bias and multiscale correction methods for variational state estimation
    Galarce, F.
    Mura, J.
    Caiazzo, A.
    [J]. APPLIED MATHEMATICAL MODELLING, 2025, 138
  • [28] State and parameter estimation in stochastic dynamical models
    DelSole, Timothy
    Yang, Xiaosong
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (18) : 1781 - 1788
  • [29] State and Parameter Estimation for Retinal Laser Treatment
    Kleyman, Viktoria
    Schaller, Manuel
    Mordmueller, Mario
    Wilson, Mitsuru
    Brinkmann, Ralf
    Worthmann, Karl
    Mueller, Matthias A.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (03) : 1366 - 1378
  • [30] Distributed parameter and state estimation in petroleum reservoirs
    Oliver, Dean S.
    Zhang, Yanfen
    Phale, Hemant A.
    Chen, Yan
    [J]. COMPUTERS & FLUIDS, 2011, 46 (01) : 70 - 77