Systematic variational method for statistical nonlinear state and parameter estimation

被引:26
作者
Ye, Jingxin [1 ]
Rey, Daniel [1 ]
Kadakia, Nirag [1 ]
Eldridge, Michael [1 ]
Morone, Uriel I. [1 ]
Rozdeba, Paul [1 ]
Abarbanel, Henry D. I. [1 ,2 ]
Quinn, John C. [3 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
[3] Intellisis Corp, San Diego, CA 92121 USA
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
DATA ASSIMILATION; ALGORITHM;
D O I
10.1103/PhysRevE.92.052901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In statistical data assimilation one evaluates the conditional expected values, conditioned on measurements, of interesting quantities on the path of a model through observation and prediction windows. This often requires working with very high dimensional integrals in the discrete time descriptions of the observations and model dynamics, which become functional integrals in the continuous-time limit. Two familiar methods for performing these integrals include (1) Monte Carlo calculations and (2) variational approximations using the method of Laplace plus perturbative corrections to the dominant contributions. We attend here to aspects of the Laplace approximation and develop an annealing method for locating the variational path satisfying the Euler-Lagrange equations that comprises the major contribution to the integrals. This begins with the identification of the minimum action path starting with a situation where the model dynamics is totally unresolved in state space, and the consistent minimum of the variational problem is known. We then proceed to slowly increase the model resolution, seeking to remain in the basin of the minimum action path, until a path that gives the dominant contribution to the integral is identified. After a discussion of some general issues, we give examples of the assimilation process for some simple, instructive models from the geophysical literature. Then we explore a slightly richer model of the same type with two distinct time scales. This is followed by a model characterizing the biophysics of individual neurons.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 74 - 86
  • [2] Accurate state and parameter estimation in nonlinear systems with sparse observations
    Rey, Daniel
    Eldridge, Michael
    Kostuk, Mark
    Abarbanel, Henry D. I.
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICS LETTERS A, 2014, 378 (11-12) : 869 - 873
  • [3] Retrieval of Initial Value and Estimation of Parameter for Nonlinear Convection-Diffusion Problem Based on Variational Adjoint Method: Numerical Experiments
    Wang, Yue-peng
    Tao, Su-Lin
    Lu, Chang-Na
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 1: ADVANCES ON SPACE WEATHER, METEOROLOGY AND APPLIED PHYSICS, 2010, : 43 - 47
  • [4] Sensitivity of response functions in variational data assimilation for joint parameter and initial state estimation
    Shutyaev, V.
    Le Dimet, F. -X.
    Parmuzin, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)
  • [5] An improved method for nonlinear parameter estimation: a case study of the Rossler model
    He, Wen-Ping
    Wang, Liu
    Jiang, Yun-Di
    Wan, Shi-Quan
    THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 125 (3-4) : 521 - 528
  • [6] State and parameter estimation using unconstrained optimization
    Schumann-Bischoff, Jan
    Parlitz, Ulrich
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [7] Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods
    Castaings, W.
    Dartus, D.
    Le Dimet, F. -X.
    Saulnier, G. -M.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (04) : 503 - 517
  • [8] Dynamical State and Parameter Estimation
    Abarbanel, Henry D. I.
    Creveling, Daniel R.
    Farsian, Reza
    Kostuk, Mark
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04): : 1341 - 1381
  • [9] Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle
    Wang, Xuehai
    Ding, Feng
    SIGNAL PROCESSING, 2015, 117 : 208 - 218
  • [10] Direct nonlinear parameter estimation method for a phase generated carrier position sensor
    Zhao, Haoyu
    Xu, Zhimou
    Ma, Donglin
    OPTICS EXPRESS, 2023, 31 (15) : 24702 - 24716