Semi-parametric estimation of the autoregressive parameter in non-Gaussian Ornstein-Uhlenbeck processes

被引:1
|
作者
Jammalamadaka, S. Rao [1 ]
Taufer, Emanuele [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Trento, Dept Econ & Management, I-38122 Trento, Italy
关键词
Adaptive estimation; Kernel density estimation; Levy process; Minimum squared distance to independence; Self-decomposable distribution; LEAST-SQUARES ESTIMATOR; ADAPTIVE ESTIMATION; PROCESSES DRIVEN; REGRESSION; INFERENCE; DISTANCE; DENSITY; MODELS; TESTS;
D O I
10.1080/03610918.2018.1468456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the problem of estimating the autoregressive parameter in discretely observed Ornstein-Uhlenbeck processes. Two consistent estimators are proposed: one obtained by maximizing a kernel-based likelihood function, and another by minimizing a Kolmogorov-type distance from independence. After establishing the consistency of these estimators, their finite-sample performance and possible normality in large samples, is investigated by means of extensive simulations. An illustrative example to credit rating is discussed.
引用
收藏
页码:2791 / 2811
页数:21
相关论文
共 50 条
  • [41] Inference for fractional Ornstein-Uhlenbeck type processes with periodic mean in the non-ergodic case
    Shevchenko, Radomyra
    Woerner, Jeannette H. C.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2022, 40 (04) : 589 - 609
  • [42] Estimation of L,vy-driven Ornstein-Uhlenbeck processes: application to modeling of and fuel-switching
    Chevallier, Julien
    Goutte, Stephane
    ANNALS OF OPERATIONS RESEARCH, 2017, 255 (1-2) : 169 - 197
  • [43] Estimation in semi-parametric regression with non-stationary regressors
    Chen, Jia
    Gao, Jiti
    Li, Degui
    BERNOULLI, 2012, 18 (02) : 678 - 702
  • [44] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Azencott, Robert
    Ren, Peng
    Timofeyev, Ilya
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1276 - 1298
  • [45] Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints
    Kuosmanen, Timo
    Kortelainen, Mika
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2012, 38 (01) : 11 - 28
  • [46] Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems
    Slezak, Jakub
    Burnecki, Krzysztof
    Metzler, Ralf
    NEW JOURNAL OF PHYSICS, 2019, 21 (07):
  • [47] CENTRE-OF-MASS LIKE SUPERPOSITION OF ORNSTEIN-UHLENBECK PROCESSES: A PATHWAY TO NON-AUTONOMOUS STOCHASTIC DIFFERENTIAL EQUATIONS AND TO FRACTIONAL DIFFUSION
    D'Ovidio, Mirko
    Vitali, Silvia
    Sposini, Vittoria
    Sliusarenko, Oleksii
    Paradisi, Paolo
    Castellani, Gastone
    Pagnini, Gianni
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1420 - 1435
  • [48] Semi-parametric Estimation Based on Second Order Parameter for Selecting Optimal Threshold of Extreme Rainfall Events
    Shinyie, Wendy Ling
    Ismail, Noriszura
    Jemain, Abdul Aziz
    WATER RESOURCES MANAGEMENT, 2014, 28 (11) : 3489 - 3514
  • [49] LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION (vol 36B, pg 394, 2016)
    Shen, Guangjun
    Yin, Xiuwei
    Yan, Litan
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 1173 - 1176
  • [50] Bayesian semi-parametric estimation of compound inhomogeneous Poisson processes for ultra-high frequency financial transaction data
    Hashimoto, Masaru
    Lenk, Peter J.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2024,