Semi-parametric estimation of the autoregressive parameter in non-Gaussian Ornstein-Uhlenbeck processes

被引:1
|
作者
Jammalamadaka, S. Rao [1 ]
Taufer, Emanuele [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Trento, Dept Econ & Management, I-38122 Trento, Italy
关键词
Adaptive estimation; Kernel density estimation; Levy process; Minimum squared distance to independence; Self-decomposable distribution; LEAST-SQUARES ESTIMATOR; ADAPTIVE ESTIMATION; PROCESSES DRIVEN; REGRESSION; INFERENCE; DISTANCE; DENSITY; MODELS; TESTS;
D O I
10.1080/03610918.2018.1468456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the problem of estimating the autoregressive parameter in discretely observed Ornstein-Uhlenbeck processes. Two consistent estimators are proposed: one obtained by maximizing a kernel-based likelihood function, and another by minimizing a Kolmogorov-type distance from independence. After establishing the consistency of these estimators, their finite-sample performance and possible normality in large samples, is investigated by means of extensive simulations. An illustrative example to credit rating is discussed.
引用
收藏
页码:2791 / 2811
页数:21
相关论文
共 50 条
  • [1] Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes
    Taufer, Emanuele
    Leonenko, Nikolai
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3050 - 3063
  • [2] GAUSSIAN AND NON-GAUSSIAN DISTRIBUTION-VALUED ORNSTEIN-UHLENBECK PROCESSES
    BOJDECKI, T
    GOROSTIZA, LG
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06): : 1136 - 1149
  • [3] Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility
    Griffin, J. E.
    Steel, M. F. J.
    JOURNAL OF ECONOMETRICS, 2006, 134 (02) : 605 - 644
  • [4] ORNSTEIN-UHLENBECK PROCESS WITH NON-GAUSSIAN STRUCTURE
    Obuchowski, Jakub
    Wylomanska, Agnieszka
    ACTA PHYSICA POLONICA B, 2013, 44 (05): : 1123 - 1136
  • [5] Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes
    Roberts, GO
    Papaspiliopoulos, O
    Dellaportas, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 369 - 393
  • [6] Ornstein-Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility
    Benth, Fred Espen
    Ruediger, Barbara
    Suess, Andre
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 461 - 486
  • [7] Parameter Estimation for Complex Ornstein-Uhlenbeck Processes
    潘玉荣
    孙西超
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (04) : 399 - 404
  • [8] Parameter estimation for fractional Ornstein-Uhlenbeck processes
    Hu, Yaozhong
    Nualart, David
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 1030 - 1038
  • [9] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98
  • [10] Option Pricing in Non-Gaussian Ornstein-Uhlenbeck Markets
    Torri, Gabriele
    Giacometti, Rosella
    Rachev, Svetlozar
    FINANCIAL MANAGEMENT OF FIRMS AND FINANCIAL INSTITUTIONS: 11TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III, 2017, : 857 - 865