ADMET modeling approaches in drug discovery

被引:489
作者
Ferreira, Leonardo L. G. [1 ]
Andricopulo, Adriano D. [1 ]
机构
[1] Univ Sao Paulo, Phys Inst Sao Carlos, Ctr Res & Innovat Biodivers & Drug Discovery, Lab Med & Computat Chem, Av Joao Dagnone 1100, BR-13563120 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ORAL BIOAVAILABILITY; METABOLIC STABILITY; LEARNING-METHODS; RANDOM FOREST; PREDICTION; ABSORPTION; CLASSIFICATION; COMBINATORIAL; OPTIMIZATION; INTELLIGENCE;
D O I
10.1016/j.drudis.2019.03.015
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In silico prediction of ADMET is an important component of pharmaceutical R&D. Last year, the FDA approved 59 new molecular entities, with small molecules comprising 64% of the therapies approved in 2018. Estimation of pharmacokinetic properties in the early phases of drug discovery has been central to guiding hit-to-lead and lead-optimization efforts. Given the outstanding complexity of the current R&D model, drug discovery players have intensely pursued molecular modeling strategies to identify patterns in ADMET data and convert them into knowledge. The field has advanced alongside the progress of chemoinformatics, which has evolved from traditional chemometrics to advanced machine learning methods.
引用
收藏
页码:1157 / 1165
页数:9
相关论文
共 71 条
[41]   Property distribution of drug-related chemical databases [J].
Oprea, TI .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2000, 14 (03) :251-264
[42]   MetStabOn-Online Platform for Metabolic Stability Predictions [J].
Podlewska, Sabina ;
Kafel, Rafal .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (04)
[43]   PREDICTING SKIN PERMEABILITY [J].
POTTS, RO ;
GUY, RH .
PHARMACEUTICAL RESEARCH, 1992, 9 (05) :663-669
[44]   FINDING CHEMICAL RECORDS BY DIGITAL COMPUTERS [J].
RAY, LC ;
KIRSCH, RA .
SCIENCE, 1957, 126 (3278) :814-819
[45]   MetaTox: Web Application for Predicting Structure and Toxicity of Xenobiotics' Metabolites [J].
Rudik, Anastasia V. ;
Bezhentsev, Vladislav M. ;
Dmitriev, Alexander V. ;
Druzhilovskiv, Dmitry S. ;
Lagunin, Alexey A. ;
Filimonov, Dmitry A. ;
Poroikov, Vladimir V. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (04) :638-642
[46]  
Sakiyama Y, 2009, EXPERT OPIN DRUG MET, V5, P149, DOI [10.1517/17425250902753261, 10.1517/17425250902753261 ]
[47]   Data Warrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis [J].
Sander, Thomas ;
Freyss, Joel ;
von Korff, Modest ;
Rufener, Christian .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (02) :460-473
[48]   vNN Web Server for ADMET Predictions [J].
Schyman, Patric ;
Liu, Ruifeng ;
Desai, Valmik ;
Wallqvist, Anders .
FRONTIERS IN PHARMACOLOGY, 2017, 8
[49]   Advances in multiparameter optimization methods for de novo drug design [J].
Segall, Matthew .
EXPERT OPINION ON DRUG DISCOVERY, 2014, 9 (07) :803-817
[50]   Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates [J].
Shen, M ;
Xiao, YD ;
Golbraikh, A ;
Gombar, VK ;
Tropsha, A .
JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (14) :3013-3020