ADMET modeling approaches in drug discovery

被引:478
作者
Ferreira, Leonardo L. G. [1 ]
Andricopulo, Adriano D. [1 ]
机构
[1] Univ Sao Paulo, Phys Inst Sao Carlos, Ctr Res & Innovat Biodivers & Drug Discovery, Lab Med & Computat Chem, Av Joao Dagnone 1100, BR-13563120 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ORAL BIOAVAILABILITY; METABOLIC STABILITY; LEARNING-METHODS; RANDOM FOREST; PREDICTION; ABSORPTION; CLASSIFICATION; COMBINATORIAL; OPTIMIZATION; INTELLIGENCE;
D O I
10.1016/j.drudis.2019.03.015
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In silico prediction of ADMET is an important component of pharmaceutical R&D. Last year, the FDA approved 59 new molecular entities, with small molecules comprising 64% of the therapies approved in 2018. Estimation of pharmacokinetic properties in the early phases of drug discovery has been central to guiding hit-to-lead and lead-optimization efforts. Given the outstanding complexity of the current R&D model, drug discovery players have intensely pursued molecular modeling strategies to identify patterns in ADMET data and convert them into knowledge. The field has advanced alongside the progress of chemoinformatics, which has evolved from traditional chemometrics to advanced machine learning methods.
引用
收藏
页码:1157 / 1165
页数:9
相关论文
共 71 条
[1]   ADME-Space: a new tool for medicinal chemists to explore ADME properties [J].
Bocci, Giovanni ;
Carosati, Emanuele ;
Vayer, Philippe ;
Arrault, Alban ;
Lozano, Sylvain ;
Cruciani, Gabriele .
SCIENTIFIC REPORTS, 2017, 7
[2]   Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects [J].
Bolton, Judy L. ;
Dunlap, Tareisha .
CHEMICAL RESEARCH IN TOXICOLOGY, 2017, 30 (01) :13-37
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Lessons learnt from assembling screening libraries for drug discovery for neglected diseases [J].
Brenk, Ruth ;
Schipani, Alessandro ;
James, Daniel ;
Krasowski, Agata ;
Gilbert, Ian Hugh ;
Frearson, Julie ;
Wyatt, Paul Graham .
CHEMMEDCHEM, 2008, 3 (03) :435-444
[5]   Automatic selection of molecular descriptors using random forest: Application to drug discovery [J].
Cano, Gaspar ;
Garcia-Rodriguez, Jose ;
Garcia-Garcia, Alberto ;
Perez-Sanchez, Horacio ;
Benediktsson, Jon Atli ;
Thapa, Anil ;
Barr, Alastair .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 72 :151-159
[6]  
Cheng FX, 2013, CURR TOP MED CHEM, V13, P1273
[7]   SUBSTRUCTURAL ANALYSIS - NOVEL APPROACH TO PROBLEM OF DRUG DESIGN [J].
CRAMER, RD ;
REDL, G ;
BERKOFF, CE .
JOURNAL OF MEDICINAL CHEMISTRY, 1974, 17 (05) :533-535
[8]   PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-Scavenging HTS [J].
Dahlin, Jayme L. ;
Nissink, J. Willem M. ;
Strasser, Jessica M. ;
Francis, Subhashree ;
Higgins, LeeAnn ;
Zhou, Hui ;
Zhang, Zhiguo ;
Walters, Michael A. .
JOURNAL OF MEDICINAL CHEMISTRY, 2015, 58 (05) :2091-2113
[9]   SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules [J].
Daina, Antoine ;
Michielin, Olivier ;
Zoete, Vincent .
SCIENTIFIC REPORTS, 2017, 7
[10]   A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules [J].
Daina, Antoine ;
Zoete, Vincent .
CHEMMEDCHEM, 2016, 11 (11) :1117-1121