Operator Jensen inequality for superquadratic functions

被引:46
作者
Kian, Mohsen [1 ]
机构
[1] Univ Bojnord, Fac Basic Sci, Dept Math, Bojnord, Iran
关键词
Superquadratic function; Operator Jensen inequality; Convex function; Positive operator; Matrix inequality;
D O I
10.1016/j.laa.2012.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Jensen operator inequality for superquadratic functions. In particular we extend the inequalityf (< Ax, x >) <= < f(A)x, x > for superquadratic functions and give some applications for our result. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 8 条
[1]  
Abramovich S., 2004, Bull. Math. Soc. Sci. Math. Roum., N. S., V47, P3
[2]   IMPROVEMENT OF JENSEN-STEFFENSEN'S INEQUALITY FOR SUPERQUADRATIC FUNCTIONS [J].
Abramovich, Shoshana ;
Ivelic, Slavica ;
Pecaric, Josip E. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (01) :159-169
[3]  
Dragomir S. S., ARXIV12031667V1MATHF
[4]  
Furuta T., 2005, Mond-Pecaric Method in Operator Inequalities.
[5]  
Kian M, MATH SLOVAC IN PRESS
[6]   Eigenvalue extensions of Bohr's inequality [J].
Matharu, Jagjit Singh ;
Moslehian, Mohammad Sal ;
Aujla, Jaspal Singh .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) :270-276
[7]  
MOND B, 1993, HOUSTON J MATH, V19, P405
[8]  
Pecaric J., 1992, Mathematics in Science and Engineering