Design of laser-coupled honeycomb optical lattices supporting Chern insulators
被引:14
作者:
Anisimovas, E.
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
Vilnius State Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, LithuaniaVilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
Anisimovas, E.
[1
,2
]
Gerbier, F.
论文数: 0引用数: 0
h-index: 0
机构:
UPMC, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, FranceVilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
Gerbier, F.
[3
]
Andrijauskas, T.
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius State Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, LithuaniaVilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
Andrijauskas, T.
[2
]
Goldman, N.
论文数: 0引用数: 0
h-index: 0
机构:
UPMC, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, FranceVilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
Goldman, N.
[3
]
机构:
[1] Vilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
[2] Vilnius State Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, Lithuania
[3] UPMC, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France
来源:
PHYSICAL REVIEW A
|
2014年
/
89卷
/
01期
基金:
欧洲研究理事会;
关键词:
TOPOLOGICAL EDGE STATES;
NEUTRAL ATOMS;
HALL CONDUCTANCE;
MAGNETIC-FIELDS;
GASES;
D O I:
10.1103/PhysRevA.89.013632
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
We introduce an explicit scheme to realize Chern insulating phases employing cold atoms trapped in a state-dependent optical lattice and laser-induced tunneling processes. The scheme uses two internal states, a ground state and a long-lived excited state, respectively trapped in separate triangular and honeycomb optical lattices. A resonant laser coherently coupling the two internal states enables hopping between the two sublattices with a Peierls-like phase factor. Although laser-induced hopping by itself does not lead to topological bands with nonzero Chern numbers, we find that such bands emerge when adding an auxiliary lattice that perturbs the lattice structure, effectively turning it at low energies into a realization of the Haldane model: a two-dimensional honeycomb lattice breaking time-reversal symmetry. We investigate the parameters of the resulting tight-binding model using first-principles band-structure calculations to estimate the relevant regime for experimental implementation.