Design of laser-coupled honeycomb optical lattices supporting Chern insulators

被引:14
作者
Anisimovas, E. [1 ,2 ]
Gerbier, F. [3 ]
Andrijauskas, T. [2 ]
Goldman, N. [3 ]
机构
[1] Vilnius State Univ, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
[2] Vilnius State Univ, Inst Theoret Phys & Astron, LT-01108 Vilnius, Lithuania
[3] UPMC, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 01期
基金
欧洲研究理事会;
关键词
TOPOLOGICAL EDGE STATES; NEUTRAL ATOMS; HALL CONDUCTANCE; MAGNETIC-FIELDS; GASES;
D O I
10.1103/PhysRevA.89.013632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce an explicit scheme to realize Chern insulating phases employing cold atoms trapped in a state-dependent optical lattice and laser-induced tunneling processes. The scheme uses two internal states, a ground state and a long-lived excited state, respectively trapped in separate triangular and honeycomb optical lattices. A resonant laser coherently coupling the two internal states enables hopping between the two sublattices with a Peierls-like phase factor. Although laser-induced hopping by itself does not lead to topological bands with nonzero Chern numbers, we find that such bands emerge when adding an auxiliary lattice that perturbs the lattice structure, effectively turning it at low energies into a realization of the Haldane model: a two-dimensional honeycomb lattice breaking time-reversal symmetry. We investigate the parameters of the resulting tight-binding model using first-principles band-structure calculations to estimate the relevant regime for experimental implementation.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Interferometric Approach to Measuring Band Topology in 2D Optical Lattices [J].
Abanin, Dmitry A. ;
Kitagawa, Takuya ;
Bloch, Immanuel ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2013, 110 (16)
[2]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[3]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]   Seeing Topological Order in Time-of-Flight Measurements [J].
Alba, E. ;
Fernandez-Gonzalvo, X. ;
Mur-Petit, J. ;
Pachos, J. K. ;
Garcia-Ripoll, J. J. .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[5]  
[Anonymous], ARXIV13086533V1
[6]   Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice [J].
Barber, ZW ;
Hoyt, CW ;
Oates, CW ;
Hollberg, L ;
Taichenachev, AV ;
Yudin, VI .
PHYSICAL REVIEW LETTERS, 2006, 96 (08)
[7]   Ultracold quantum gases in triangular optical lattices [J].
Becker, C. ;
Soltan-Panahi, P. ;
Kronjaeger, J. ;
Doescher, S. ;
Bongs, K. ;
Sengstock, K. .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162