A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance

被引:55
|
作者
Li, Xiao-lan [1 ]
Yang, Xing [1 ]
Hu, Yu-xin [1 ]
Yu, Xiao-dong [1 ]
Li, Qiu-li [1 ]
机构
[1] Liaoning Normal Univ, Coll Life Sci, Key Lab Plant Biotechnol Liaoning Prov, Dalian 116081, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Abiotic stress; NAC transcription factor; Transgenic plant; Stress resistance; Suaeda liaotungensis K; FINGER PROTEIN GENE; RESISTANCE; DEHYDRATION; EXPRESSION; SALINITY;
D O I
10.1007/s00299-014-1602-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sl NAC1 functions as a stress-responsive NAC protein involved in the abscisic acid-dependent signaling pathway and enhances transgenic Arabidopsis drought, salt, and cold stress tolerance. NAC (NAM, ATAF1, 2, CUC2) transcription factors constitute the largest families of plant-specific transcription factors, known to be involved in various growth or developmental processes and in regulation of response to environmental stresses. However, only little information regarding stress-related NAC genes is available in Suaeda liaotungensis K. In this study, we cloned a full-length NAC gene (1,011 bp) named SlNAC1 using polymerase chain reaction from Suaeda liaotungensis K. and investigated its function by overexpression in transgenic Arabidopsis. SlNAC1 contains an NAC-conserved domain. Its expression in S. liaotungensis was induced by drought, high-salt, and cold (4 A degrees C) stresses and by abscisic acid. Subcellular localization experiments in onion epidermal cells indicated that SlNAC1 is localized in the nucleus. Yeast one-hybrid assays showed that SlNAC1 functions as a transcriptional activator. SlNAC1 transgenic Arabidopsis displayed a higher survival ratio and lower rate of water loss under drought stress; a higher germination ratio, higher survival ratio, and lower root inhibition rate under salt stress; a higher survival ratio under cold stress; and a lower germination ratio and root inhibition rate under abscisic acid treatment, compared with wild-type Arabidopsis. These results suggested that SlNAC1 functions as a stress-responsive NAC protein involved in the abscisic acid-dependent signaling pathway and may have potential applications in transgenic breeding to enhance crops' abiotic stress tolerances.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 50 条
  • [41] The durum wheat NAC transcription factor TtNAC2A enhances drought stress tolerance in Arabidopsis
    Mergby, Dhawya
    Hanin, Moez
    Saidi, Mohammed Najib
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 186
  • [42] The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis
    Zhao, Xun
    Yang, Xuanwen
    Pei, Shengqiang
    He, Guo
    Wang, Xiaoyu
    Tang, Qi
    Jia, Chunlin
    Lu, Ying
    Hu, Ruibo
    Zhou, Gongke
    GENE, 2016, 586 (01) : 158 - 169
  • [43] A novel DREB transcription factor from Halimodendron halodendron leads to enhance drought and salt tolerance in Arabidopsis
    Ma, J. -T.
    Yin, C. -C.
    Guo, Q. -Q.
    Zhou, M. -L.
    Wang, Z. -L.
    Wu, Y. -M.
    BIOLOGIA PLANTARUM, 2015, 59 (01) : 74 - 82
  • [44] MpNAC1, a transcription factor from the mangrove associate Millettia pinnata, confers salt and drought stress tolerance in transgenic Arabidopsis and rice
    Yang, Heng
    Zhang, Yi
    Lyu, Shanwu
    Liu, Yujuan
    Jian, Shuguang
    Deng, Shulin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211
  • [45] MbMYBC1, a M. baccata MYB transcription factor, contribute to cold and drought stress tolerance in transgenic Arabidopsis
    Liu, Wanda
    Wang, Tianhe
    Wang, Yu
    Liang, Xiaoqi
    Han, Jilong
    Han, Deguo
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [46] Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis
    Mei, Fangming
    Chen, Bin
    Li, Fangfang
    Zhang, Yifang
    Kang, Zhensheng
    Wang, Xiaojing
    Mao, Hude
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 37 - 50
  • [47] Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana
    Jin, Xiaofeng
    Xue, Yong
    Wang, Ren
    Xu, RanRan
    Bian, Lin
    Zhu, Bo
    Han, Hongjuan
    Peng, Rihe
    Yao, Quanhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (02) : 1743 - 1752
  • [48] Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses
    Pang, Xinyue
    Xue, Min
    Ren, Meiyan
    Nan, Dina
    Wu, Yaqi
    Guo, Huiqin
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 624 - 634
  • [49] Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis
    Lu, Pu
    Magwanga, Richard Odongo
    Kirungu, Joy Nyangasi
    Hu, Yangguang
    Dong, Qi
    Cai, Xiaoyan
    Zhou, Zhongli
    Wang, Xingxing
    Zhang, Zhenmei
    Hou, Yuqing
    Wang, Kunbo
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [50] Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis
    Yang, Xuanwen
    He, Kang
    Chi, Xiaoyuan
    Chai, Guohua
    Wang, Yiping
    Jia, Chunlin
    Zhang, Hongpeng
    Zhou, Gongke
    Hu, Ruibo
    PLANT SCIENCE, 2018, 277 : 229 - 241