Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation

被引:129
作者
Dijkstra, Henk A. [1 ]
Wubs, Fred W. [2 ]
Cliffe, Andrew K. [3 ]
Doedel, Eusebius [4 ]
Dragomirescu, Ioana F. [5 ]
Eckhardt, Bruno [6 ]
Gelfgat, Alexander Yu. [7 ]
Hazel, Andrew L. [8 ]
Lucarini, Valerio [9 ,10 ]
Salinger, Andy G. [11 ]
Phipps, Erik T. [11 ]
Sanchez-Umbria, Juan [12 ]
Schuttelaars, Henk [13 ]
Tuckerman, Laurette S. [14 ]
Thiele, Uwe [15 ]
机构
[1] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, NL-3508 TC Utrecht, Netherlands
[2] Univ Groningen, Dept Math & Comp Sci, Groningen, Netherlands
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[4] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[5] Univ Politehn Timisoara, Natl Ctr Engn Syst Complex Fluids, Timisoara, Romania
[6] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[7] Tel Aviv Univ, Fac Engn, Sch Mech Engn, IL-69978 Tel Aviv, Israel
[8] Univ Manchester, Sch Math, Manchester, Lancs, England
[9] Univ Hamburg, Inst Meteorol, Hamburg, Germany
[10] Univ Reading, Dept Math & Stat, Reading, Berks, England
[11] Sandia Natl Labs, Albuquerque, NM 87185 USA
[12] Univ Politecn Cataluna, Dept Fis Aplicada, Barcelona, Spain
[13] Delft Univ Technol, Dept Appl Math Anal, Delft, Netherlands
[14] PMMH ESPCI, Paris, France
[15] Univ Loughborough, Dept Math Sci, Loughborough, Leics, England
基金
美国能源部;
关键词
Numerical bifurcation analysis; transitions in fluid flows; high-dimensional dynamical systems; EXACT COHERENT STRUCTURES; TRAVELING-WAVE SOLUTIONS; PIPE-FLOW; OCEAN CIRCULATION; THERMOSOLUTAL CONVECTION; RIGHTMOST EIGENVALUES; MARANGONI CONVECTION; NONLINEAR EVOLUTION; MULTIPLE EQUILIBRIA; STABILITY ANALYSIS;
D O I
10.4208/cicp.240912.180613a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as 'tipping points', is important for understanding the transition mechanisms. We describe the two basic classes of methods of numerical bifurcation analysis, which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system. The numerical challenges involved in both methods are mentioned and possible solutions to current bottlenecks are given. To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems, we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 142 条
[41]   NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (I) BIFURCATION IN FINITE DIMENSIONS [J].
Doedel, Eusebius ;
Keller, Herbert B. ;
Kernevez, Jean Pierre .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :493-520
[42]  
Dragomirescu F. I., 2009, P 3 IAHR INT M WORKG, P15
[43]   Transition in pipe flow: the saddle structure on the boundary of turbulence [J].
Duguet, Y. ;
Willis, A. P. ;
Kerswell, R. R. .
JOURNAL OF FLUID MECHANICS, 2008, 613 (255-274) :255-274
[44]   Self-Sustained Localized Structures in a Boundary-Layer Flow [J].
Duguet, Yohann ;
Schlatter, Philipp ;
Henningson, Dan S. ;
Eckhardt, Bruno .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[45]   Relative periodic orbits in transitional pipe flow [J].
Duguet, Yohann ;
Pringle, Chris C. T. ;
Kerswell, Rich R. .
PHYSICS OF FLUIDS, 2008, 20 (11)
[46]   Dynamical systems and the transition to turbulence in linearly stable shear flows [J].
Eckhardt, Bruno ;
Faisst, Holger ;
Schmiegel, Armin ;
Schneider, Tobias M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1868) :1297-1315
[47]   Turbulence transition in pipe flow [J].
Eckhardt, Bruno ;
Schneider, Tobias M. ;
Hof, Bjorn ;
Westerweel, Jerry .
ANNUAL REVIEW OF FLUID MECHANICS, 2007, 39 (447-468) :447-468
[48]  
Ehlers J., 1988, MORPHODYNAMICS WADDE
[49]   Traveling waves in pipe flow [J].
Faisst, H ;
Eckhardt, B .
PHYSICAL REVIEW LETTERS, 2003, 91 (22)
[50]  
Frank-Kamenetzky DA, 1939, ACTA PHYSICOCHIM URS, V10, P365