Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation

被引:129
作者
Dijkstra, Henk A. [1 ]
Wubs, Fred W. [2 ]
Cliffe, Andrew K. [3 ]
Doedel, Eusebius [4 ]
Dragomirescu, Ioana F. [5 ]
Eckhardt, Bruno [6 ]
Gelfgat, Alexander Yu. [7 ]
Hazel, Andrew L. [8 ]
Lucarini, Valerio [9 ,10 ]
Salinger, Andy G. [11 ]
Phipps, Erik T. [11 ]
Sanchez-Umbria, Juan [12 ]
Schuttelaars, Henk [13 ]
Tuckerman, Laurette S. [14 ]
Thiele, Uwe [15 ]
机构
[1] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, NL-3508 TC Utrecht, Netherlands
[2] Univ Groningen, Dept Math & Comp Sci, Groningen, Netherlands
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[4] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
[5] Univ Politehn Timisoara, Natl Ctr Engn Syst Complex Fluids, Timisoara, Romania
[6] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[7] Tel Aviv Univ, Fac Engn, Sch Mech Engn, IL-69978 Tel Aviv, Israel
[8] Univ Manchester, Sch Math, Manchester, Lancs, England
[9] Univ Hamburg, Inst Meteorol, Hamburg, Germany
[10] Univ Reading, Dept Math & Stat, Reading, Berks, England
[11] Sandia Natl Labs, Albuquerque, NM 87185 USA
[12] Univ Politecn Cataluna, Dept Fis Aplicada, Barcelona, Spain
[13] Delft Univ Technol, Dept Appl Math Anal, Delft, Netherlands
[14] PMMH ESPCI, Paris, France
[15] Univ Loughborough, Dept Math Sci, Loughborough, Leics, England
基金
美国能源部;
关键词
Numerical bifurcation analysis; transitions in fluid flows; high-dimensional dynamical systems; EXACT COHERENT STRUCTURES; TRAVELING-WAVE SOLUTIONS; PIPE-FLOW; OCEAN CIRCULATION; THERMOSOLUTAL CONVECTION; RIGHTMOST EIGENVALUES; MARANGONI CONVECTION; NONLINEAR EVOLUTION; MULTIPLE EQUILIBRIA; STABILITY ANALYSIS;
D O I
10.4208/cicp.240912.180613a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems. Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed. The computation of the critical conditions associated with these transitions, popularly referred to as 'tipping points', is important for understanding the transition mechanisms. We describe the two basic classes of methods of numerical bifurcation analysis, which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system. The numerical challenges involved in both methods are mentioned and possible solutions to current bottlenecks are given. To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems, we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 142 条
[1]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[2]  
[Anonymous], 1990, NONLINEAR OSCILLATIO
[3]  
[Anonymous], 1977, APPL BIFURCATION THE
[4]  
[Anonymous], SCIENCE, DOI DOI 10.1126/SCIENCE.ABB3368
[5]  
[Anonymous], 1983, Matrix Computations.
[6]  
[Anonymous], 1996, Iterative Methods for Sparse Linear Systems
[7]   Spatially localized states in Marangoni convection in binary mixtures [J].
Assemat, P. ;
Bergeon, A. ;
Knobloch, E. .
FLUID DYNAMICS RESEARCH, 2008, 40 (11-12) :852-876
[8]   Three-dimensional Floquet stability analysis of the wake of a circular cylinder [J].
Barkley, D ;
Henderson, RD .
JOURNAL OF FLUID MECHANICS, 1996, 322 :215-241
[9]   Spatially localized binary-fluid convection [J].
Batiste, Oriol ;
Knobloch, Edgar ;
Alonso, Arantxa ;
Mercader, Isabel .
JOURNAL OF FLUID MECHANICS, 2006, 560 :149-158
[10]   Depinning of three-dimensional drops from wettability defects [J].
Beltrame, Ph. ;
Haenggi, P. ;
Thiele, U. .
EPL, 2009, 86 (02)