Stability of the Pexiderized Quadratic Functional Equation in Paranormed Spaces

被引:1
作者
Wang, Zhihua [1 ]
Sahoo, Prasanna K. [2 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Hubei, Peoples R China
[2] Univ Louisville, Dept Math, Louisville, KY 40292 USA
关键词
Hyers-Ulam stability; Paranormed space; Pexiderized quadratic functional equation;
D O I
10.2298/FIL1614829W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present paper is to investigate the Hyers-Ulam stability of the Pexiderized quadratic functional equation, namely of f (x + y) + f (x - y) = 2 1 (x) + 2h(y) in paranormed spaces. More precisely, first we examine the stability for odd and even functions and then we apply our results to prove the Hyers-Ulam stability of the quadratic functional equation f (x + y) + f (x y) = 2 f(x) + 2 f(y) in paranormed spaces for a general function.
引用
收藏
页码:3829 / 3837
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 2001, J K OREAN M ATHSOC
[2]  
[Anonymous], J MATH ANAL APPL
[3]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[4]  
Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
[5]   THE STABILITY OF HOMOMORPHISMS AND AMENABILITY, WITH APPLICATIONS TO FUNCTIONAL-EQUATIONS [J].
FORTI, GL .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1987, 57 :215-226
[7]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[8]  
Jun KW, 2001, MATH INEQUAL APPL, V4, P93
[9]  
Jung SM, 2011, SPRINGER SER OPTIM A, V48, P1, DOI 10.1007/978-1-4419-9637-4
[10]  
Kannappan P, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-89492-8_1