Hitchin Fibration on Moduli of Symplectic and Orthogonal Parabolic Higgs Bundles

被引:4
|
作者
Roy, Sumit [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
关键词
Integrable system; Moduli space; Parabolic bundle; SPECTRAL CURVES;
D O I
10.1007/s11040-020-09366-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact Riemann surface of genus g >= 2, and let D. X be a fixed finite subset. LetM( r, d, alpha) denote the moduli space of stable parabolic G-bundles (where G is a complex orthogonal or symplectic group) of rank r, degree d and weight type a over X. Hitchin, in his paper Hitchin (Duke Math. J. 54(1), 91-114, 1987) discovered that the cotangent bundle of the moduli space of stable bundles on an algebraic curve is an algebraically completely integrable system fibered, over a space of invariant polynomials, either by a Jacobian or a Prym variety of spectral curves. In this paper we study the Hitchin fibers forM( r, d, alpha).
引用
收藏
页数:13
相关论文
共 50 条