Quantum mechanical evolution towards thermal equilibrium

被引:454
作者
Linden, Noah [1 ]
Popescu, Sandu [2 ,3 ]
Short, Anthony J. [4 ]
Winter, Andreas [1 ,5 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Hewlett Packard Labs, Bristol BS12 6QZ, Avon, England
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England
[5] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117542, Singapore
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 06期
关键词
D O I
10.1103/PhysRevE.79.061103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The circumstances under which a system reaches thermal equilibrium, and how to derive this from basic dynamical laws, has been a major question from the very beginning of thermodynamics and statistical mechanics. Despite considerable progress, it remains an open problem. Motivated by this issue, we address the more general question of equilibration. We prove, with virtually full generality, that reaching equilibrium is a universal property of quantum systems: almost any subsystem in interaction with a large enough bath will reach an equilibrium state and remain close to it for almost all times. We also prove several general results about other aspects of thermalization besides equilibration, for example, that the equilibrium state does not depend on the detailed microstate of the bath.
引用
收藏
页数:12
相关论文
共 17 条
[1]   Dephasing and the steady state in quantum many-particle systems [J].
Barthel, T. ;
Schollwoeck, U. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[2]   ERGODIC FOUNDATION OF QUANTUM STATISTICAL MECHANICS [J].
BOCCHIERI, P ;
LOINGER, A .
PHYSICAL REVIEW, 1959, 114 (04) :948-951
[3]   Exact relaxation in a class of nonequilibrium quantum lattice systems [J].
Cramer, M. ;
Dawson, C. M. ;
Eisert, J. ;
Osborne, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[4]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[5]   Cryptographic distinguishability measures for quantum-mechanical states [J].
Fuchs, CA ;
van de Graaf, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1216-1227
[6]  
Gemmer J., 2004, LECT NOTES PHYS
[7]   Canonical typicality [J].
Goldstein, S ;
Lebowitz, JL ;
Tumulka, R ;
Zanghì, N .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[8]  
HAYDEN P, ARXIVQUANTPH0204093
[9]   Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model [J].
Kollath, Corinna ;
Laeuchli, Andreas M. ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[10]  
LEDOUX M, 2001, AMS MONOGRAPHS, V89