An efficient algorithm for structured sparse quantile regression

被引:2
作者
Nassiri, Vahid [1 ]
Loris, Ignace [2 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
关键词
Structured sparsity; Variable selection; Convex optimization; LOW-BIRTH-WEIGHT; VARIABLE SELECTION; MODEL SELECTION;
D O I
10.1007/s00180-014-0494-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An efficient algorithm is derived for solving the quantile regression problem combined with a group sparsity promoting penalty. The group sparsity of the regression parameters is achieved by using a -norm penalty (or constraint) on the regression parameters. The algorithm is efficient in the sense that it obtains the regression parameters for a wide range of penalty parameters, thus enabling easy application of a model selection criteria afterwards. A Matlab implementation of the proposed algorithm is provided and some applications of the methods are studied.
引用
收藏
页码:1321 / 1343
页数:23
相关论文
共 50 条
[31]   Smoothing ADMM for Sparse-Penalized Quantile Regression With Non-Convex Penalties [J].
Mirzaeifard, Reza ;
Venkategowda, Naveen K. D. ;
Gogineni, Vinay Chakravarthi ;
Werner, Stefan .
IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 :213-228
[32]   Inference in functional linear quantile regression [J].
Li, Meng ;
Wang, Kehui ;
Maity, Arnab ;
Staicu, Ana-Maria .
JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
[33]   Quantile Regression under Local Misspecification [J].
Duan, Xiao-gang ;
Wang, Qi-hua .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04) :790-802
[34]   Smoothed quantile regression with nonignorable dropouts [J].
Ma, Wei ;
Wang, Lei .
ANALYSIS AND APPLICATIONS, 2022, 20 (05) :859-894
[35]   Quantile regression with group lasso for classification [J].
Hashem, Hussein ;
Vinciotti, Veronica ;
Alhamzawi, Rahim ;
Yu, Keming .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2016, 10 (03) :375-390
[36]   Double-structured sparse multitask regression with application of statistical downscaling [J].
Li, Yi ;
Ding, A. Adam .
ENVIRONMETRICS, 2019, 30 (04)
[37]   Fast and efficient algorithms for sparse semiparametric bifunctional regression [J].
Novo, Silvia ;
Vieu, Philippe ;
Aneiros, German .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (04) :606-638
[38]   Majorize-minimize algorithm for multiresponse sparse regression [J].
Simila, Timo .
2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol II, Pts 1-3, 2007, :553-556
[39]   Communication-Efficient Modeling with Penalized Quantile Regression for Distributed Data [J].
Hu, Aijun ;
Li, Chujin ;
Wu, Jing .
COMPLEXITY, 2021, 2021
[40]   A Homotopy Algorithm for the Quantile Regression Lasso and Related Piecewise Linear Problems [J].
Osborne, M. R. ;
Turlach, B. A. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) :972-987