An efficient algorithm for structured sparse quantile regression

被引:2
作者
Nassiri, Vahid [1 ]
Loris, Ignace [2 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
关键词
Structured sparsity; Variable selection; Convex optimization; LOW-BIRTH-WEIGHT; VARIABLE SELECTION; MODEL SELECTION;
D O I
10.1007/s00180-014-0494-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An efficient algorithm is derived for solving the quantile regression problem combined with a group sparsity promoting penalty. The group sparsity of the regression parameters is achieved by using a -norm penalty (or constraint) on the regression parameters. The algorithm is efficient in the sense that it obtains the regression parameters for a wide range of penalty parameters, thus enabling easy application of a model selection criteria afterwards. A Matlab implementation of the proposed algorithm is provided and some applications of the methods are studied.
引用
收藏
页码:1321 / 1343
页数:23
相关论文
共 50 条
  • [21] SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    STATISTICA SINICA, 2023, 33 (02) : 945 - 959
  • [22] Group penalized quantile regression
    Ouhourane, Mohamed
    Yang, Yi
    Benedet, Andrea L.
    Oualkacha, Karim
    STATISTICAL METHODS AND APPLICATIONS, 2022, 31 (03) : 495 - 529
  • [23] ADMM for Sparse-Penalized Quantile Regression with Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2046 - 2050
  • [24] Efficient sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm
    Mclain, Alexander C.
    Zgodic, Anja
    Bondell, Howard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 207
  • [25] An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression
    Peng, Bo
    Wang, Lan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 676 - 694
  • [26] A coordinate descent algorithm for computing penalized smooth quantile regression
    Mkhadri, Abdallah
    Ouhourane, Mohamed
    Oualkacha, Karim
    STATISTICS AND COMPUTING, 2017, 27 (04) : 865 - 883
  • [27] Estimation of linear composite quantile regression using EM algorithm
    Tian, Yuzhu
    Zhu, Qianqian
    Tian, Maozai
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 183 - 191
  • [28] A coordinate descent algorithm for computing penalized smooth quantile regression
    Abdallah Mkhadri
    Mohamed Ouhourane
    Karim Oualkacha
    Statistics and Computing, 2017, 27 : 865 - 883
  • [29] Smoothing ADMM for Sparse-Penalized Quantile Regression With Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 (213-228): : 213 - 228
  • [30] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190