An efficient algorithm for structured sparse quantile regression

被引:2
|
作者
Nassiri, Vahid [1 ]
Loris, Ignace [2 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
关键词
Structured sparsity; Variable selection; Convex optimization; LOW-BIRTH-WEIGHT; VARIABLE SELECTION; MODEL SELECTION;
D O I
10.1007/s00180-014-0494-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An efficient algorithm is derived for solving the quantile regression problem combined with a group sparsity promoting penalty. The group sparsity of the regression parameters is achieved by using a -norm penalty (or constraint) on the regression parameters. The algorithm is efficient in the sense that it obtains the regression parameters for a wide range of penalty parameters, thus enabling easy application of a model selection criteria afterwards. A Matlab implementation of the proposed algorithm is provided and some applications of the methods are studied.
引用
收藏
页码:1321 / 1343
页数:23
相关论文
共 50 条
  • [1] An efficient algorithm for structured sparse quantile regression
    Vahid Nassiri
    Ignace Loris
    Computational Statistics, 2014, 29 : 1321 - 1343
  • [2] Sparse quantile regression
    Chen, Le-Yu
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2195 - 2217
  • [3] Incorporating Graphical Structure of Predictors in Sparse Quantile Regression
    Wang, Zhanfeng
    Liu, Xianhui
    Tang, Wenlu
    Lin, Yuanyuan
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (03) : 783 - 792
  • [4] Bayesian effect selection in structured additive quantile regression
    Rappl, Anja
    Carlan, Manuel
    Kneib, Thomas
    Klokman, Sebastiaan
    Bergherr, Elisabeth
    STATISTICAL MODELLING, 2024,
  • [5] High-Dimensional Structured Quantile Regression
    Sivakumar, Vidyashankar
    Banerjee, Arindam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [6] Sparse Composite Quantile Regression in Ultrahigh Dimensions With Tuning Parameter Calibration
    Gu, Yuwen
    Zou, Hui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7132 - 7154
  • [7] Robust and efficient sparse learning over networks: a decentralized surrogate composite quantile regression approach
    Qiao, Nan
    Chen, Canyi
    Zhu, Zhengtian
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [8] Efficient sparse portfolios based on composite quantile regression for high-dimensional index tracking
    Li, Ning
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (08) : 1466 - 1478
  • [9] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [10] DISTRIBUTED SPARSE COMPOSITE QUANTILE REGRESSION IN ULTRAHIGH DIMENSIONS
    Chen, Canyi
    Gu, Yuwen
    Zou, Hui
    Zhu, Liping
    STATISTICA SINICA, 2023, 33 : 1143 - 1167