Electric field gradient focusing in microchannels with embedded bipolar electrode

被引:96
|
作者
Hlushkou, Dzmitry [2 ]
Perdue, Robbyn K. [1 ]
Dhopeshwarkar, Rahul [1 ]
Crooks, Richard M. [1 ]
Tallarek, Ulrich [2 ]
机构
[1] Univ Texas Austin, Dept Chem & Biochem, Ctr Electrochem, Austin, TX 78712 USA
[2] Univ Marburg, Dept Chem, D-35032 Marburg, Germany
基金
美国国家科学基金会;
关键词
ELECTROKINETIC CONCENTRATION ENRICHMENT; INDUCED-CHARGE ELCTROOSMOSIS; STEADY-STATE VOLTAMMETRY; SOLID-PHASE EXTRACTION; MICROFLUIDIC DEVICES; SAMPLE STACKING; ZONE-ELECTROPHORESIS; ELECTROFOCUSING TECHNIQUES; CAPILLARY-ELECTROPHORESIS; FARADAIC DEPOLARIZATION;
D O I
10.1039/b822404h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The complex interplay of electrophoretic, electroosmotic, bulk convective, and diffusive mass/charge transport in a hybrid poly(dimethylsiloxane) (PDMS)/glass microchannel with embedded floating electrode is analyzed. The thin floating electrode attached locally to the wall of the straight microchannel results in a redistribution of local field strength after the application of an external electric field. Together with bulk convection based on cathodic electroosmotic flow, an extended field gradient is formed in the anodic microchannel segment. It imparts a spatially dependent electrophoretic force on charged analytes and, in combination with the bulk convection, results in an electric field gradient focusing at analyte-specific positions. Analyte concentration in the enriched zone approaches a maximum value which is independent of its concentration in the supplying reservoirs. A simple approach is shown to unify the temporal behavior of the concentration factors under general conditions.
引用
收藏
页码:1903 / 1913
页数:11
相关论文
共 50 条
  • [31] Electric Field Gradient in Microplasmas
    Gomes, M. P.
    Nascimento, J. C.
    Barbosa, I. M.
    Martin, I. M.
    Pessoa, R. S.
    Carvalho, F. C.
    Costa, L. M. S.
    Sismanoglu, B. N.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (02) : 493 - 502
  • [32] Modified Poisson equation for the electric field and electric field gradient
    Yang, Pei-Kun
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 223 : 1213 - 1225
  • [33] Simultaneous Separation of Negatively and Positively Charged Species in Dynamic Field Gradient Focusing Using a Dual Polarity Electric Field
    Burke, Jeffrey M.
    Huang, Zheng
    Ivory, Cornelius F.
    ANALYTICAL CHEMISTRY, 2009, 81 (19) : 8236 - 8243
  • [34] ELECTRIC-FIELD RESPONSE OF 2-DIMENSIONAL INHOMOGENEITIES TO UNIPOLAR AND BIPOLAR ELECTRODE CONFIGURATIONS
    DEY, A
    MEYER, WH
    MORRISON, HF
    DOLAN, WM
    GEOPHYSICS, 1975, 40 (04) : 630 - 640
  • [35] Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications
    Kates, Brian
    Ren, Carolyn L.
    ELECTROPHORESIS, 2006, 27 (10) : 1967 - 1976
  • [36] Electric field coupled electrode
    Schönweitz, P
    Schönweitz, C
    ELECTROANALYSIS, 1999, 11 (13) : 957 - 963
  • [37] Method of Detection Optimization Based on Vector Electric Field Multi-electrode Gradient Information
    Liu, Jianjun
    Wu, Chao
    Cui, Guoyu
    Wang, Zheng
    Wang, Yubo
    Pan, Guofeng
    Liu, Guohua
    Hu, Chengbo
    Lu, Yongling
    He, Xujie
    PROCEEDINGS OF 2017 CHINESE INTELLIGENT AUTOMATION CONFERENCE, 2018, 458 : 31 - 42
  • [38] Electric field gradient, generalized Sternheimer shieldings and electric field gradient polarizabilities by multiconfigurational SCF response
    Rizzo, A
    Ruud, K
    Helgaker, T
    Jaszunski, M
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (06): : 2264 - 2274
  • [39] Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field
    Wu, Yupan
    Yue, Yuanbo
    Zhang, Haohao
    Ma, Xun
    Zhang, Zhexin
    Li, Kemu
    Meng, Yingqi
    Wang, Shaoxi
    Wang, Xuewen
    Huang, Wei
    LAB ON A CHIP, 2024, 24 (04) : 933 - 945
  • [40] AN ANALYSIS OF THE GRADIENT OF THE ELECTRIC FIELD IN HCN
    BASSOMPIERRE, A
    DISCUSSIONS OF THE FARADAY SOCIETY, 1955, (19): : 260 - 263