Cluster algebras arising from cluster tubes

被引:8
作者
Zhou, Yu [1 ]
Zhu, Bin [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2014年 / 89卷
关键词
MAXIMAL RIGID OBJECTS; TRIANGULATED CATEGORIES; 2-CALABI-YAU CATEGORIES; GROTHENDIECK GROUP; MUTATION; QUIVERS;
D O I
10.1112/jlms/jdu006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the cluster algebras arising from cluster tubes with rank bigger than 1. Cluster tubes are 2-Calabi-Yau triangulated categories that contain no cluster tilting objects, but maximal rigid objects. Fix a certain maximal rigid object T in the cluster tube C-n of rank n. For any indecomposable rigid object M in C-n, we define an analogous X-M of Caldero-Chapoton's formula (or Palu's cluster character formula) by using the geometric information of M. We show that X-M, X-M' satisfy the mutation formula when M, M' form an exchange pair, and that X? : M (sic). X-M gives a bijection from the set of indecomposable rigid objects in C-n to the set of cluster variables of cluster algebra of type Cn-1, which induces a bijection between the set of basic maximal rigid objects in C-n and the set of clusters. This yields a surprising result proved recently by Buan-Marsh-Vatne that the combinatorics of maximal rigid objects in the cluster tube C-n encodes the combinatorics of the cluster algebra of type Bn-1, since the combinatorics of cluster algebras of type Bn-1 and of type Cn-1 is the same by a result of Fomin and Zelevinsky. As a consequence, we give a categorification of cluster algebras of type C.
引用
收藏
页码:703 / 723
页数:21
相关论文
共 50 条
[21]   ON THE CLUSTER MULTIPLICATION THEOREM FOR ACYCLIC CLUSTER ALGEBRAS [J].
Xu, Fan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (02) :753-776
[22]   Linear independence of cluster monomials for skew-symmetric cluster algebras [J].
Irelli, Giovanni Cerulli ;
Keller, Bernhard ;
Labardini-Fragoso, Daniel ;
Plamondon, Pierre-Guy .
COMPOSITIO MATHEMATICA, 2013, 149 (10) :1753-1764
[23]   Cluster categories of formal DG algebras and singularity categories [J].
Hanihara, Norihiro .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[24]   Extensions in Jacobian algebras and cluster categories of marked surfaces [J].
Canakci, Ilke ;
Schroll, Sibylle .
ADVANCES IN MATHEMATICS, 2017, 313 :1-49
[25]   The q-characters of minimal affinizations of type G2 arising from cluster algebras [J].
Tong, Jun ;
Duan, Bing ;
Luo, Yan-Feng .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) :565-585
[26]   CLUSTER ALGEBRAS: AN INTRODUCTION [J].
Williams, Lauren K. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 51 (01) :1-26
[27]   On a category of cluster algebras [J].
Assem, Ibrahim ;
Dupont, Gregoire ;
Schiffler, Ralf .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) :553-582
[28]   Denominators in cluster algebras of affine type [J].
Buan, Aslak Bakke ;
Marsh, Bethany Rose .
JOURNAL OF ALGEBRA, 2010, 323 (08) :2083-2102
[29]   Cluster tilting for higher Auslander algebras [J].
Iyama, Osamu .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :1-61
[30]   Cluster algebras via cluster categories with infinite-dimensional morphism spaces [J].
Plamondon, Pierre-Guy .
COMPOSITIO MATHEMATICA, 2011, 147 (06) :1921-1954