Determination of free (unconjugated) amphetamine-type stimulants in urine samples by dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry (DLLME-GC-MS)

被引:26
|
作者
Cunha, Ricardo Leal [1 ,2 ]
Lopes, Wilson Araujo [1 ,3 ,4 ]
Pereira, Pedro Afonso P. [1 ,3 ,4 ]
机构
[1] Univ Fed Bahia, Inst Quim, BR-40170115 Salvador, BA, Brazil
[2] Dept Policia Tecn Bahia, Lab Toxicol Forense, BR-40100180 Salvador, BA, Brazil
[3] Univ Fed Bahia, CIEnAm, Ctr Interdisciplinar Energia & Ambiente, BR-40170290 Salvador, BA, Brazil
[4] Univ Fed Bahia, INCT E&A, BR-40170115 Salvador, BA, Brazil
关键词
Urine; Amphetamine-type stimulants; Analysis; DLLME; GC-MS; PHASE MICROEXTRACTION; SCREENING METHOD; FENPROPOREX; AGENTS; DRUGS; ABUSE;
D O I
10.1016/j.microc.2015.11.017
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The consumption of drugs of abuse is a growing practice in the modem world. Synthetic drugs and amphetamine derivatives in particular occupy a prominent place. The consumption of stimulants such as amphetamine-type fenproporex (FEN), diethylpropione (DIE) and sibutramine (SIB) has become a common practice among prdfessional drivers in Brazilian highways in recent years and among people who wish to lose weight, but make use of these substances indiscriminately. The present work is the development of an analytical method using dispersive liquid-liquid microextraction (DLLME), able to extract and preconcentrate these medicines, in their unchanged form, at low concentrations in urine samples. The analyses were performed using gas chromatography coupled to mass spectrometry (GC-MS). The method presented good analytical performance, with excellent linearity in the dynamic range of 1 to 1000 ng mL(-1) for DIE, FEN and SIB, with values of R-2 equal to 0.9926, 0.9994 and 0.9951, respectively. The limits of detection (LOD) were of 0.1 ng mL(-1) for DIE and FEN and 0.05 ng mL(-1) for SIB. The intraday precision ranged between 6.6% and 7.9% while the interday ranged between 3.9% and 5.5%. The relative recoveries obtained were, in average, 92.9% for DIE, 96.6% for FEN and 91.7% for SIB. Twenty urine samples, obtained from the Forensic Toxicology Laboratory, were then analyzed for the presence of DIE, FEN and SIB, using the analytical method developed in this work. None of the analytes were found in these samples, probably due to a decrease in their consumption, mainly because of the prohibition in the manufacturing and marketing of DIE and FEN, together with a more rigorous control in the sales of SIB in Brazil. This also confirmed the preliminary results from a screening conducted by immunoassay techniques. Therefore, the method developed proved to be quite useful in the analysis of the studied compounds in urine samples, post mortem or in vivo. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 235
页数:6
相关论文
共 50 条
  • [41] Determination of Seven Antidepressants in Pericardial Fluid by Means of Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry
    Cabarcos-Fernandez, P.
    Tabernero-Duque, M. J.
    Alvarez-Freire, I
    Bermejo-Barrera, A. M.
    JOURNAL OF ANALYTICAL TOXICOLOGY, 2022, 46 (02) : 146 - 156
  • [42] Determination of bisphenols, parabens, and benzophenones in placenta by dispersive liquid-liquid microextraction and gas chromatography-tandem mass spectrometry
    Fernandez, M. F.
    Mustieles, V
    Suarez, B.
    Reina-Perez, I
    Olivas-Martinez, A.
    Vela-Soria, F.
    CHEMOSPHERE, 2021, 274 (274)
  • [43] Up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of fungicides in wine
    Chu, Shang-Ping
    Tseng, Wan-Chi
    Kong, Po-Hsin
    Huang, Chun-Kai
    Chen, Jung-Hsuan
    Chen, Pai-Shan
    Huang, Shang-Da
    FOOD CHEMISTRY, 2015, 185 : 377 - 382
  • [44] Development and application of a dispersive liquid-liquid microextraction method for the determination of tetracyclines in beef by liquid chromatography mass spectrometry
    Mookantsa, S. O. S.
    Dube, S.
    Nindi, M. M.
    TALANTA, 2016, 148 : 321 - 328
  • [45] Application of dispersive liquid-liquid microextraction for the determination of selected organochlorine pesticides in honey by gas chromatography-mass spectrometry
    Kujawski, Maciej W.
    Pinteaux, Emilie
    Namiesnik, Jacek
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2012, 234 (02) : 223 - 230
  • [46] Determination of phenobarbital in hair matrix by liquid phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS)
    Roveri, Flavia Lopes
    Passos Bismara Paranhos, Beatriz Aparecida
    Yonamine, Mauricio
    FORENSIC SCIENCE INTERNATIONAL, 2016, 265 : 75 - 80
  • [47] Determination of lewisite metabolite 2-chlorovinylarsonous acid in urine by use of dispersive derivatization liquid-liquid microextraction followed by gas chromatography–mass spectrometry
    Mohammad Taghi Naseri
    Mojtaba Shamsipur
    Mehran Babri
    Hamid Saeidian
    Mansour Sarabadani
    Davood Ashrafi
    Naser Taghizadeh
    Analytical and Bioanalytical Chemistry, 2014, 406 : 5221 - 5230
  • [48] Determination of Ketosteroids in Human Urine Using Dispersive Liquid-Liquid Microextraction and Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry
    E. V. Dmitrieva
    A. Z. Temerdashev
    A. K. Osipova
    Journal of Analytical Chemistry, 2021, 76 : 1305 - 1311
  • [49] Determination of Ketosteroids in Human Urine Using Dispersive Liquid-Liquid Microextraction and Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry
    Dmitrieva, E., V
    Temerdashev, A. Z.
    Osipova, A. K.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2021, 76 (11) : 1305 - 1311
  • [50] Determination of phthalate esters in bottled water using dispersive liquid-liquid microextraction coupled with GC-MS
    Mousa, Amayreh
    Basheer, Chanbasha
    Al-Arfaj, Abdul Rahman
    JOURNAL OF SEPARATION SCIENCE, 2013, 36 (12) : 2003 - 2009