Energy thresholds of blow-up for the Hartree equation with a focusing subcritical perturbation

被引:6
作者
Tian, Shuai [1 ,2 ]
Yang, Ying [1 ,2 ]
Zhou, Rui [3 ]
Zhu, Shihui [1 ,2 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610066, Peoples R China
[3] Meishan Vocat & Tech Coll, Dept Normal Educ, Meishan, Peoples R China
关键词
blow‐ up; nonlinear Schrö dinger equation; subcritical perturbation; sharp energy threshold; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; STABLE STANDING WAVES; POWER-TYPE; SCATTERING; EXISTENCE;
D O I
10.1111/sapm.12362
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the blow-up solutions for the Schrodinger equation with a Hartree-type nonlinearity together with a power-type subcritical perturbation. The precisely sharp energy thresholds for blow-up and global existence are obtained by analyzing potential well structures for associated functionals.
引用
收藏
页码:658 / 676
页数:19
相关论文
共 29 条
[1]   Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra [J].
Bhimani, Divyang G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 268 (01) :141-159
[2]  
Cazenave T., 2003, COURANT LECT NOTES M
[3]   Stability of equilibria for a Hartree equation for random fields [J].
Collot, C. ;
de Suzzoni, A-S .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 137 :70-100
[4]   The Nonlinear Schrodinger Equations with Combined Nonlinearities of Power-Type and Hartree-Type [J].
Fang, Daoyuan ;
Han, Zheng ;
Dai, Jialing .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (03) :435-474
[5]   ON THE BLOW-UP SOLUTIONS FOR THE FRACTIONAL NONLINEAR SCHRODINGER EQUATION WITH COMBINED POWER-TYPE NONLINEARITIES [J].
Feng, Binhua .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (05) :1785-1804
[6]   On the blow-up solutions for the nonlinear Schrodinger equation with combined power-type nonlinearities [J].
Feng, Binhua .
JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) :203-220
[7]  
Gao YF, 2020, Z ANGEW MATH PHYS, V71, DOI 10.1007/s00033-020-1274-0
[8]  
Georgiev V., ORBITAL STABILITY SO
[9]   On the classification of the spectrally stable standing waves of the Hartree problem [J].
Georgiev, Vladimir ;
Stefanov, Atanas .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 370 :29-39
[10]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797