Nonparametric binary instrumental variable analysis of competing risks data

被引:13
作者
Richardson, Amy [1 ]
Hudgens, Michael G. [1 ]
Fine, Jason P. [1 ]
Brookhart, M. Alan [2 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Competing risks; Compliance; Identifiability; Instrumental variables; Right censoring; Survival analysis; CAUSAL INFERENCE; RANDOMIZED-TRIAL; SURVIVAL-DATA; MODELS; IDENTIFICATION; NONCOMPLIANCE; TRANSMISSION; TESTS;
D O I
10.1093/biostatistics/kxw023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In both observational studies and randomized trials with noncompliance, unmeasured confounding may exist which may bias treatment effect estimates. Instrumental variables (IV) are a popular technique for addressing such confounding, enabling consistent estimation of causal effects. This paper proposes nonparametric IV estimators for censored time to event data that may be subject to competing risks. A simple, plug-in estimator is introduced using nonparametric estimators of the cumulative incidence function, with confidence intervals derived using asymptotic theory. To provide an overall test of the treatment effect, an integrated weighted difference statistic is suggested, which is applicable to data with and without competing risks. Simulation studies demonstrate that the methods perform well with realistic samples sizes. The methods are applied to assess the effect of infant or maternal antiretroviral therapy on transmission of HIV from mother to child via breastfeeding using data from a large, recently completed randomized trial in Malawi where noncompliance with assigned treatment may confound treatment effect estimates.
引用
收藏
页码:48 / 61
页数:14
相关论文
共 26 条
[1]  
AALEN OO, 1978, SCAND J STAT, V5, P141
[2]   Semiparametric instrumental variable estimation of treatment response models [J].
Abadie, A .
JOURNAL OF ECONOMETRICS, 2003, 113 (02) :231-263
[3]  
Abbring J., 2005, IFS WORKING PAPERS
[4]  
ANDERSEN P. K., 1995, SPRINGER SERIES STAT
[5]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[6]   Analysis of survival data from a randomized trial with all-or-none compliance: Estimating the cost-effectiveness of a cancer screening program [J].
Baker, SG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :929-934
[7]  
Brookhart M Alan, 2007, Int J Biostat, V3, P14
[8]   Effect of Highly Active Antiretroviral Therapy on Incident AIDS Using Calendar Period as an Instrumental Variable [J].
Cain, Lauren E. ;
Cole, Stephen R. ;
Greenland, Sander ;
Brown, Todd T. ;
Chmiel, Joan S. ;
Kingsley, Lawrence ;
Detels, Roger .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 (09) :1124-1132
[9]   Maternal or Infant Antiretroviral Drugs to Reduce HIV-1 Transmission [J].
Chasela, Charles S. ;
Hudgens, Michael G. ;
Jamieson, Denise J. ;
Kayira, Dumbani ;
Hosseinipour, Mina C. ;
Kourtis, Athena P. ;
Martinson, Francis ;
Tegha, Gerald ;
Knight, Rodney J. ;
Ahmed, Yusuf I. ;
Kamwendo, Deborah D. ;
Hoffman, Irving F. ;
Ellington, Sascha R. ;
Kacheche, Zebrone ;
Soko, Alice ;
Wiener, Jeffrey B. ;
Fiscus, Susan A. ;
Kazembe, Peter ;
Mofolo, Innocent A. ;
Chigwenembe, Maggie ;
Sichali, Dorothy S. ;
van der Horst, Charles M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 362 (24) :2271-2281
[10]   Estimating the effect of treatment in a proportional hazards model in the presence of non-compliance and contamination [J].
Cuzick, Jack ;
Sasieni, Peter ;
Myles, Jonathan ;
Tyrer, Jonathan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :565-588