Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers

被引:44
|
作者
Shin, J. C. [1 ]
D'Souza, M. [1 ]
Liu, Z. [1 ]
Kirch, J. [1 ]
Mawst, L. J. [1 ]
Botez, D. [1 ]
Vurgaftman, I. [2 ]
Meyer, J. R. [2 ]
机构
[1] Univ Wisconsin, Dept ECE, Madison, WI 53706 USA
[2] USN, Res Lab, Washington, DC 20375 USA
关键词
current density; quantum cascade lasers; semiconductor lasers; semiconductor quantum wells; CONTINUOUS-WAVE OPERATION;
D O I
10.1063/1.3139069
中图分类号
O59 [应用物理学];
学科分类号
摘要
4.8 mu m emitting, quantum cascade (QC) lasers that suppress carrier leakage out of their active regions to the continuum have been realized by using deep (in energy) quantum wells in the active regions, tall barriers in and around the active regions, and tapered conduction-band-edge relaxation regions. The characteristic temperature coefficients T-0 and T-1 for the threshold current density J(th) and slope efficiency, respectively, reach values of 238 K over the 20-60 degrees C temperature range, which means that J(th) and the slope efficiency vary with temperature half as fast as those of conventional QC lasers. In turn, significantly improved continuous wave performance is expected.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Suppression of carrier leakage in 4.8 μm - emitting quantum cascade lasers
    Botez, D.
    Shin, J. C.
    Mawst, L. J.
    Vurgaftman, I.
    Meyer, J. R.
    Kumar, S.
    NOVEL IN-PLANE SEMICONDUCTOR LASERS IX, 2010, 7616
  • [2] Electron leakage and its suppression via deep-well structures in 4.5-to 5.0-μm-emitting quantum cascade lasers
    Botez, Dan
    Shin, Jae Cheol
    Kumar, Sushil
    Mawst, Luke J.
    Vurgaftman, Igor
    Meyer, Jerry R.
    OPTICAL ENGINEERING, 2010, 49 (11)
  • [3] Design and simulation of deep-well GaAs-based quantum cascade lasers for 6.7 μm room-temperature operation
    Gao, X.
    D'Souza, M.
    Botez, D.
    Knezevic, I.
    Journal of Applied Physics, 2007, 102 (11):
  • [4] Quantum cascade lasers emitting near 2.6 μm
    Cathabard, O.
    Teissier, R.
    Devenson, J.
    Moreno, J. C.
    Baranov, A. N.
    APPLIED PHYSICS LETTERS, 2010, 96 (14)
  • [5] The Quantum Cascade Lasers:: the semiconductor solution for lasers in the 3-5μm wavelength region.
    Sirtori, C
    Marcadet, X
    Garcia, M
    Baranov, AN
    Teissier, R
    Barate, D
    Vicet, A
    Alibert, C
    Cockburn, J
    Revin, D
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES, 2004, 5615 : 16 - 26
  • [6] Extremely temperature insensitive, continuous-wave broadband quantum cascade lasers
    Fujita, Kazuue
    Yamanishi, Masamichi
    Furuta, Shinichi
    Dougakiuchi, Tatsuo
    Sugiyama, Atsushi
    Edamura, Tadataka
    NOVEL IN-PLANE SEMICONDUCTOR LASERS XII, 2013, 8640
  • [7] Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers
    Botez, D.
    Kumar, S.
    Shin, J. C.
    Mawst, L. J.
    Vurgaftman, I.
    Meyer, J. R.
    APPLIED PHYSICS LETTERS, 2010, 97 (07)
  • [8] High-power operation of uncoated strain-compensated quantum cascade lasers at 4.8 μm
    Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, China
    Chin. Phys. Lett., 2007, 12 (3428-3430): : 3428 - 3430
  • [9] High-performance injectorless quantum cascade lasers emitting below 6 μm
    Katz, Simeon
    Vizbaras, Augustinas
    Boehm, Gerhard
    Amann, Markus-Christian
    APPLIED PHYSICS LETTERS, 2009, 94 (15)
  • [10] III-V Superlattices on InP/Si Metamorphic Buffer Layers for λ≈4.8 μm Quantum Cascade Lasers
    Rajeev, Ayushi
    Shi, Bei
    Li, Qiang
    Kirch, Jeremy D.
    Cheng, Micah
    Tan, Aaron
    Kim, Honghyuk
    Oresick, Kevin
    Sigler, Chris
    Lau, Kei M.
    Kuech, Thomas F.
    Mawst, Luke J.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (01):