Line strength and collisional broadening coefficients of H2O at 2.7 μm for natural gas quality assurance applications

被引:26
作者
Nwaboh, Javis Anyangwe [1 ]
Werhahn, Olav [1 ]
Ebert, Volker [1 ]
机构
[1] Phys Tech Bundesanstalt, Braunschweig, Germany
关键词
spectroscopy; water; line data; metrology; uncertainties; WATER-VAPOR; FUTURE; REGION; CO2;
D O I
10.1080/00268976.2014.916823
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We employed tunable diode laser absorption spectroscopy to measure the line strength, the methane (CH4), ethane (C2H6) and the propane (C3H8) broadening coefficients for the 523-422 H2O transition at 3619.61 cm(-1). Water amount fractions generated by a stable and accurate humidity transfer standard, traceable to the SI units via the German national humidity standard, were used to calibrate the spectroscopic line strength measurements. We focus on the traceability of the measured line data to the SI and on uncertainty assessments following the guidelines of the Guide to the Expression of Uncertainty in Measurement. We determined the line strength to be (8.42 +/- 0.07) x10(-20) cm(-1)/(cm(-2) molecule) corresponding to a relative uncertainty of +/- 0.8%. To the best of our knowledge, we report the first methane, ethane and propane broadening coefficients of (8.037 +/- 0.056) x10(-5) cm(-1)/hPa, (9.077 +/- 0.064) x10(-5) cm(-1)/hPa and (10.469 +/- 0.073) x10(-5) cm(-1)/hPa for the 523-422 H2O transition at 3619.61 cm(-1), respectively. The relative combined uncertainties of the stated CH4, C2H6 and C3H8 broadening coefficients are in the +/- 0.7% range.
引用
收藏
页码:2451 / 2461
页数:11
相关论文
共 27 条
[21]   The HITRAN 2008 molecular spectroscopic database [J].
Rothman, L. S. ;
Gordon, I. E. ;
Barbe, A. ;
Benner, D. Chris ;
Bernath, P. E. ;
Birk, M. ;
Boudon, V. ;
Brown, L. R. ;
Campargue, A. ;
Champion, J. -P. ;
Chance, K. ;
Coudert, L. H. ;
Dana, V. ;
Devi, V. M. ;
Fally, S. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Goldman, A. ;
Jacquemart, D. ;
Kleiner, I. ;
Lacome, N. ;
Lafferty, W. J. ;
Mandin, J. -Y. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Miller, C. E. ;
Moazzen-Ahmadi, N. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Orphal, J. ;
Perevalov, V. I. ;
Perrin, A. ;
Predoi-Cross, A. ;
Rinsland, C. P. ;
Rotger, M. ;
Simeckova, M. ;
Smith, M. A. H. ;
Sung, K. ;
Tashkun, S. A. ;
Tennyson, J. ;
Toth, R. A. ;
Vandaele, A. C. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (9-10) :533-572
[22]   History and future of the molecular spectroscopic databases [J].
Rothman, LS ;
Jacquinet-Husson, N ;
Boulet, C ;
Perrin, AM .
COMPTES RENDUS PHYSIQUE, 2005, 6 (08) :897-907
[23]  
Sonntag D., 1990, Zeitschrift fur Meteorologie, V40, P340
[24]  
Toth R.A., MKIV FOURIER TRANSFO
[25]   Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS [J].
Wagner, Steven ;
Klein, Moritz ;
Kathrotia, Trupti ;
Riedel, Uwe ;
Kissel, Thilo ;
Dreizler, Andreas ;
Ebert, Volker .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 109 (03) :533-540
[26]   High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine [J].
Witzel, O. ;
Klein, A. ;
Wagner, S. ;
Meffert, C. ;
Schulz, C. ;
Ebert, V. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 109 (03) :521-532
[27]   Laboratory measurement of the spectroscopic line parameters of water vapor in the 610-2100 and 3000-4050 cm-1 regions at lower-tropospheric temperatures [J].
Zou, Q ;
Varanasi, P .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 82 (1-4) :45-98