Semi-supervised learning of emblematic gestures

被引:5
作者
Al-Behadili, Husam [1 ]
Woehler, Christian [1 ]
Grumpe, Arne [1 ]
机构
[1] Tech Univ Dortmund, Fak Elektrotech & Informat Tech, Arbeitsgebiet Bildsignalverarbeitung, D-44227 Dortmund, Germany
关键词
Classification; gestures; polynomial classifier; confidence band; semi-supervised learning; RECOGNITION;
D O I
10.1515/auto-2014-1115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study describes a method for semi-supervised learning of three-dimensional emblematic gestures. Starting from a supervised learning stage using a small initial training set, the training set is extended fully automatically by employing a semi-supervised learning approach. Several criteria for acceptance or rejection of the class labels generated by the classifier are proposed. The experimental evaluation shows that the proposed semi-supervised learning approach yields an error rate which is only slightly higher than that of a classifier using all manually assigned class labels.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2011, INT J COMPUTER SCI I
[2]  
[Anonymous], 2012, P SIGCHI C HUM FACT
[3]  
[Anonymous], 2006, Pattern recognition and machine learning
[4]  
Bellman Richard, 1959, IRE Trans. Autom. Control, V4, P1
[5]  
Cui T., 2011, P WORK COMP INT DORT, P171
[6]   Selective sampling using the query by committee algorithm [J].
Freund, Y ;
Seung, HS ;
Shamir, E ;
Tishby, N .
MACHINE LEARNING, 1997, 28 (2-3) :133-168
[7]  
Gaus Y. F. A., 2012, P 3 INT C INT SYST M
[8]   Enhanced Computer Vision with Microsoft Kinect Sensor: A Review [J].
Han, Jungong ;
Shao, Ling ;
Xu, Dong ;
Shotton, Jamie .
IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (05) :1318-1334
[9]  
Hillebrand M., 2010, Proc. of the 20th Workshop Computational Intelli- gence, P302
[10]  
Hussain S. M., 2012, P IEEE OSA IAPR INT