Bialgebroids, XA-bialgebras and duality

被引:72
作者
Brzezinski, T
Militaru, G
机构
[1] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jabr.2001.9101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivalence between Lu's bialgebroids, Xu's bialgebroids with an anchor, and Takeuchi's X-A-bialgebras is explicitly proven. A new class of examples of bialgebroids is constructed. A (formal) dual of a bialgebroid, termed bicoalgebroid, is defined. A weak Hopf algebra is shown to be an example of such a bicoalgebroid. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:279 / 294
页数:16
相关论文
共 20 条
[1]   Weak Hopf algebras I.: Integral theory and C*-structure [J].
Böhm, G ;
Nill, F ;
Szlachányi, K .
JOURNAL OF ALGEBRA, 1999, 221 (02) :385-438
[2]  
BOHM G, 1996, LETT MATH PHYS, V35, P437
[3]  
BRZEZINSKI T, IN PRESS ALGEBRAS RE
[4]  
Caenepeel S., 1994, K-theory, V8, P231, DOI [10.1007/BF00960863, DOI 10.1007/BF00960863]
[5]   FROM SUPERSYMMETRY TO QUANTUM COMMUTATIVITY [J].
COHEN, M ;
WESTREICH, S .
JOURNAL OF ALGEBRA, 1994, 168 (01) :1-27
[6]  
Etingof P, 2001, DUKE MATH J, V108, P135
[7]  
KADISON L, ARXIVMATHRA0108067
[8]   Hopf algebroids and quantum groupoids [J].
Lu, JH .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (01) :47-70
[9]   QUASITRIANGULAR HOPF-ALGEBRAS AND YANG-BAXTER EQUATIONS [J].
MAJID, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (01) :1-91
[10]  
Majid S., 1995, FDN QUANTUM GROUP TH