Mussel-inspired nitrogen-doped graphene nanosheet supported manganese oxide nanowires as highly efficient electrocatalysts for oxygen reduction reaction

被引:37
|
作者
Lee, Taemin
Jeon, Eun Kyung
Kim, Byeong-Su [1 ]
机构
[1] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
METAL-FREE ELECTROCATALYSTS; AIR BATTERIES; NANOSTRUCTURED MATERIALS; ENERGY-CONVERSION; CARBON NANOTUBES; STORAGE DEVICES; FUEL-CELLS; CATALYSTS; PERFORMANCE; SUPERCAPACITORS;
D O I
10.1039/c3ta14147k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalysts for oxygen reduction reaction (ORR) play a vital role in determining the performance of fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive by virtue of their excellent electrocatalytic activity, high conductivity and large surface area. This study reports the synthesis of a highly efficient electrocatalyst based on nitrogen-doped (N-doped) graphene nanosheets (NG) using mussel-inspired dopamine as a nitrogen source. Dopamine undergoes oxidative polymerization that can functionalize the surface of graphene and also introduces nitrogen atoms onto the graphene nanosheets upon pyrolysis. N-doping not only leads to improved catalytic activity, but it also provides anchoring sites for the growth of electroactive amorphous manganese oxide nanowires on the graphene nanosheets (NG/MnOx). On the basis of a Koutecky-Levich plot, it is found that the hybrid NG/MnOx catalyst exhibits excellent catalytic activity with a direct four-electron pathway in ORR. Furthermore, the hybrid electrocatalyst possesses superior stability and gives a low yield of peroxide compared to commercial Pt/C catalysts. This suggests that the unique combination of an N-doped graphene support and amorphous MnOx nanowires can synergistically improve the catalytic activity for ORR.
引用
收藏
页码:6167 / 6173
页数:7
相关论文
共 50 条
  • [21] Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction
    Parvez, Khaled
    Yang, Shubin
    Hernandez, Yenny
    Winter, Andreas
    Turchanin, Andrey
    Feng, Xinliang
    Muellen, Klaus
    ACS NANO, 2012, 6 (11) : 9541 - 9550
  • [22] Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction
    Huang, Jinzhen
    Han, Jiecai
    Gao, Tangling
    Zhang, Xinghong
    Li, Jiajie
    Li, Zhenjiang
    Xu, Ping
    Song, Bo
    CARBON, 2017, 124 : 34 - 41
  • [23] Nitrogen-doped Bimetallic Carbon Nanosheets as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhao, Quiping
    Hu, Guanqun
    Zhao, Shengbin
    Meng, Xiangzhi
    Meng, Fanchao
    Li, Chunlei
    Cong, Yuanyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (07): : 1 - 16
  • [24] N-Doped and Sulfonated Reduced Graphene Oxide Supported PtNi Nanoparticles as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction
    Ouyang, Chun
    Xun, Damao
    Jian, Gang
    COATINGS, 2022, 12 (08)
  • [25] Graphitic carbon nitrides supported by nitrogen-doped graphene as efficient metal-free electrocatalysts for oxygen reduction
    Wang, Min
    Wu, Zhanpeng
    Dai, Liming
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 753 : 16 - 20
  • [26] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Felix Studt
    Catalysis Letters, 2013, 143 : 58 - 60
  • [27] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [28] PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
    Lei Zhao
    Jinxia Jiang
    Shuhao Xiao
    Zhao Li
    Junjie Wang
    Xinxin Wei
    Qingquan Kong
    Jun Song Chen
    Rui Wu
    Nano Materials Science, 2023, 5 (03) : 329 - 334
  • [29] PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
    Zhao, Lei
    Jiang, Jinxia
    Xiao, Shuhao
    Li, Zhao
    Wang, Junjie
    Wei, Xinxin
    Kong, Qingquan
    Chen, Jun Song
    Wu, Rui
    NANO MATERIALS SCIENCE, 2023, 5 (03) : 329 - 334
  • [30] Atomically-dispersed Fe sites embedded in nitrogen-doped graphene as highly efficient oxygen reduction electrocatalysts
    Deng, Yaoyao
    Lin, Yao
    Zhang, Minxi
    Lu, Yidong
    Zhang, Wentao
    Zhang, Wei
    Zhang, Zhenwei
    Xiang, Mei
    Gu, Hongwei
    Bai, Jirong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 65 : 905 - 911