Mussel-inspired nitrogen-doped graphene nanosheet supported manganese oxide nanowires as highly efficient electrocatalysts for oxygen reduction reaction

被引:37
|
作者
Lee, Taemin
Jeon, Eun Kyung
Kim, Byeong-Su [1 ]
机构
[1] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
METAL-FREE ELECTROCATALYSTS; AIR BATTERIES; NANOSTRUCTURED MATERIALS; ENERGY-CONVERSION; CARBON NANOTUBES; STORAGE DEVICES; FUEL-CELLS; CATALYSTS; PERFORMANCE; SUPERCAPACITORS;
D O I
10.1039/c3ta14147k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalysts for oxygen reduction reaction (ORR) play a vital role in determining the performance of fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive by virtue of their excellent electrocatalytic activity, high conductivity and large surface area. This study reports the synthesis of a highly efficient electrocatalyst based on nitrogen-doped (N-doped) graphene nanosheets (NG) using mussel-inspired dopamine as a nitrogen source. Dopamine undergoes oxidative polymerization that can functionalize the surface of graphene and also introduces nitrogen atoms onto the graphene nanosheets upon pyrolysis. N-doping not only leads to improved catalytic activity, but it also provides anchoring sites for the growth of electroactive amorphous manganese oxide nanowires on the graphene nanosheets (NG/MnOx). On the basis of a Koutecky-Levich plot, it is found that the hybrid NG/MnOx catalyst exhibits excellent catalytic activity with a direct four-electron pathway in ORR. Furthermore, the hybrid electrocatalyst possesses superior stability and gives a low yield of peroxide compared to commercial Pt/C catalysts. This suggests that the unique combination of an N-doped graphene support and amorphous MnOx nanowires can synergistically improve the catalytic activity for ORR.
引用
收藏
页码:6167 / 6173
页数:7
相关论文
共 50 条
  • [1] Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction
    Dumont, Joseph H.
    Martinez, Ulises
    Artyushkova, Kateryna
    Purdy, Geraldine M.
    Dattelbaum, Andrew M.
    Zelenay, Piotr
    Mohite, Aditya
    Atanassov, Plamen
    Gupta, Gautam
    ACS APPLIED NANO MATERIALS, 2019, 2 (03): : 1675 - 1682
  • [2] Platinum Nanoparticles Supported on Nitrogen-Doped Graphene Nanosheets as Electrocatalysts for Oxygen Reduction Reaction
    Kristel Jukk
    Nadezda Kongi
    Protima Rauwel
    Leonard Matisen
    Kaido Tammeveski
    Electrocatalysis, 2016, 7 : 428 - 440
  • [3] Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction
    Pingwei Li
    Xuying Yin
    Ya Yan
    Ke Zhan
    Junhe Yang
    Bin Zhao
    Jianqiang Li
    Journal of Materials Science, 2018, 53 : 6124 - 6134
  • [4] Platinum Nanoparticles Supported on Nitrogen-Doped Graphene Nanosheets as Electrocatalysts for Oxygen Reduction Reaction
    Jukk, Kristel
    Kongi, Nadezda
    Rauwel, Protima
    Matisen, Leonard
    Tammeveski, Kaido
    ELECTROCATALYSIS, 2016, 7 (05) : 428 - 440
  • [5] Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction
    Li, Pingwei
    Yin, Xuying
    Yan, Ya
    Zhan, Ke
    Yang, Junhe
    Zhao, Bin
    Li, Jianqiang
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (08) : 6124 - 6134
  • [6] Ternary PdNi-based nanocrystals supported on nitrogen-doped reduced graphene oxide as highly active electrocatalysts for the oxygen reduction reaction
    Sun, Lingna
    Liao, Biyan
    Ren, Xiangzhong
    Li, Yongliang
    Zhang, Peixin
    Deng, Libo
    Gao, Yuan
    ELECTROCHIMICA ACTA, 2017, 235 : 543 - 552
  • [7] Nitrogen-doped Graphene Loaded with Cobalt Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Hong
    Li, Yanping
    Han, Gaoyi
    CHEMISTRYSELECT, 2022, 7 (04):
  • [8] Graphdiyne and Nitrogen-Doped Graphdiyne Nanotubes as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction
    Liu, Tongchang
    Hao, Xinmeng
    Liu, Jiaqi
    Zhang, Pengfei
    Chang, Jiaming
    Shang, Hong
    Liu, Xuanhe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [9] Highly efficient electrocatalysts for oxygen reduction reaction: Nitrogen-doped PtNiMo ternary alloys
    Luo, Lin
    Abbo, Hanna S.
    Titinchi, Salam J. J.
    Tsiakaras, Panagiotis
    Yin, Shibin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (13) : 6582 - 6591
  • [10] Porous Nitrogen-doped Reduced Graphene Oxide Gels as Efficient Supercapacitor Electrodes and Oxygen Reduction Reaction Electrocatalysts
    Yang, Liu
    Wang, Tao
    Wu, Dongling
    CHINESE JOURNAL OF CHEMISTRY, 2020, 38 (10) : 1123 - 1131