Mean value coordinates for arbitrary planar polygons

被引:196
作者
Hormann, Kai
Floater, Michael S.
机构
[1] Tech Univ Clausthal, Dept Informat, D-38678 Clausthal Zellerfeld, Germany
[2] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
来源
ACM TRANSACTIONS ON GRAPHICS | 2006年 / 25卷 / 04期
关键词
algorithms; theory; barycentric coordinates; interpolation;
D O I
10.1145/1183287.1183295
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Barycentric coordinates for triangles are commonly used in computer graphics, geometric modeling, and other computational sciences because they provide a convenient way to linearly interpolate the data that is given at the corners of a triangle. The concept of barycentric coordinates can also be extended in several ways to convex polygons with more than three vertices, but most of these constructions break down when used in the nonconvex setting. Mean value coordinates offer a choice that is not limited to convex configurations, and we show that they are in fact well-defined for arbitrary planar polygons without self-intersections. Besides their many other important properties, these coordinate functions are smooth and allow an efficient and robust implementation. They are particularly useful for interpolating data that is given at the vertices of the polygons and we present several examples of their application to common problems in computer graphics and geometric modeling.
引用
收藏
页码:1424 / 1441
页数:18
相关论文
共 40 条
[21]   Scattered data interpolation with multilevel B-splines [J].
Lee, S ;
Wolberg, G ;
Shin, SY .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1997, 3 (03) :228-244
[22]  
LEE SY, 1995, P SIGGRAPH 95, P439
[23]  
Malsch E. A., 2005, Journal of Graphics Tools, V10, P27
[24]   Shape functions for polygonal domains with interior nodes [J].
Malsch, EA ;
Dasgupta, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (08) :1153-1172
[25]   Interpolations for temperature distributions: a method for all non-concave polygons [J].
Malsch, EA ;
Dasgupta, G .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (08) :2165-2188
[26]  
MALSCH EA, 2005, MATH J, V9, P641
[27]  
Meyer M., 2002, Journal of Graphics Tools, V7, P13, DOI 10.1080/10867651.2002.10487551
[28]   A framework for geometric warps and deformations [J].
Milliron, T ;
Jensen, RJ ;
Barzel, R ;
Finkelstein, A .
ACM TRANSACTIONS ON GRAPHICS, 2002, 21 (01) :20-51
[29]  
Mobius A.F., 1827, Der barycentrische Calcul, ein Hulfsmittel zur analytischen Behandlung der Geometrie
[30]   Developments in bivariate spline interpolation [J].
Nürnberger, G ;
Zeilfelder, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) :125-152