HYPERCYCLICITY OF WEIGHTED CONVOLUTION OPERATORS ON HOMOGENEOUS SPACES

被引:24
作者
Chen, C. [1 ]
Chu, C-H [1 ]
机构
[1] Univ London, Sch Math Sci, London E1 4NS, England
关键词
Hypercyclic operator; topologically mixing operator; convolution; homogeneous space; L-p-space; BANACH-SPACES; CHAOTIC SEMIGROUPS; CRITERION; INVARIANT; SEQUENCES;
D O I
10.1090/S0002-9939-09-09889-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 <= p <= infinity. We show that a weighted translation operator oil the LP space of a homogeneous space is hypercyclic under some condition on the weight. This condition is also necessary in the discrete case and is equivalent to hereditary hypercyclicity of the operator. The condition call be strengthened to characterise topologically mixing weighted translation operators on discrete spaces.
引用
收藏
页码:2709 / 2718
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1952, Journal d'Analyse Mathematique, DOI DOI 10.1007/BF02786968
[2]   Existence of hypercyclic operators on topological vector spaces [J].
Ansari, SI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :384-390
[3]   Hypercyclic operators failing the Hypercyclicity Criterion on classical Banach spaces [J].
Bayart, F. ;
Matheron, E. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :426-441
[4]   Invariant Gaussian measures for operators on Banach spaces and linear dynamics [J].
Bayart, Frederic ;
Grivaux, Sophie .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :181-210
[5]   Frequently hypercyclic operators [J].
Bayart, Frederic ;
Grivaux, Sophie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (11) :5083-5117
[6]   Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces [J].
Bermúdez, T ;
Bonilla, A ;
Conejero, JA ;
Peris, A .
STUDIA MATHEMATICA, 2005, 170 (01) :57-75
[7]   On hypercyclic operators on Banach spaces [J].
Bernal-González, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1003-1010
[8]   The Hypercyclicity Criterion for sequences of operators [J].
Bernal-González, L ;
Grosse-Erdmann, KG .
STUDIA MATHEMATICA, 2003, 157 (01) :17-32
[9]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[10]  
Birkhoff GD, 1929, CR HEBD ACAD SCI, V189, P473