Heat flow for harmonic maps from graphs into Riemannian manifolds

被引:0
|
作者
Baird, Paul [1 ]
Fardoun, Ali [1 ]
Regbaoui, Rachid [1 ]
机构
[1] Univ Bretagne Occidentale, Lab Math, UMR CNRS 6205, 6 Ave Gorgeu, F-29238 Brest 3, France
关键词
Combinatorial graph; Harmonic map; Heat flow; MAPPINGS;
D O I
10.1016/j.geomphys.2022.104496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of harmonic map from a graph into a Riemannian manifold via a discrete version of the energy density. Existence and basic properties are established. Global existence and convergence of the associated heat flow are proved without any assumption on the curvature of the target manifold. We discuss a variant of the Steiner problem which replaces length by elastic energy. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Harmonic maps and fundamental groups of nonpositively curved Riemannian manifolds
    Shen, CL
    Zhou, Q
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1996, 17 (04) : 491 - 496
  • [22] On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds
    WeiJun Lu
    Science China Mathematics, 2015, 58 : 1483 - 1498
  • [23] Global existence of the harmonic map heat flow into Lorentzian manifolds
    Han, Xiaoli
    Jost, Juergen
    Liu, Lei
    Zhao, Liang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 130 - 156
  • [24] Harmonic Maps from Kahler Manifolds
    Yuanlong Xin
    ActaMathematicaSinica(EnglishSeries), 1999, 15 (02) : 277 - 292
  • [25] Harmonic maps from Kahler manifolds
    Xin, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (02) : 277 - 292
  • [26] On Uniqueness of Heat Flow of Harmonic Maps
    Huang, Tao
    Wang, Changyou
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1525 - 1546
  • [27] RELATIVE ENERGY GAP FOR HARMONIC MAPS OF RIEMANN SURFACES INTO REAL ANALYTIC RIEMANNIAN MANIFOLDS
    Feehan, Paul M. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (07) : 3179 - 3190
  • [28] Harmonic maps from Kähler manifolds
    Yuanlong Xin
    Acta Mathematica Sinica, 1999, 15 : 277 - 292
  • [29] Harmonic maps from complex Finsler manifolds
    Han, Jingwei
    Shen, Yibing
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (02) : 341 - 356
  • [30] Nonuniqueness for the Heat Flow¶of Harmonic Maps on the Disk
    Michiel Bertsch Dal Passo
    Roberta van der Hout
    Rein undefined
    Archive for Rational Mechanics and Analysis, 2002, 161 : 93 - 112