Relative energetics and structural properties of zirconia using a self-consistent tight-binding model

被引:78
作者
Fabris, S [1 ]
Paxton, AT [1 ]
Finnis, MW [1 ]
机构
[1] Queens Univ Belfast, Dept Pure & Appl Phys, Atomist Simulat Grp, Belfast BT7 1NN, Antrim, North Ireland
关键词
D O I
10.1103/PhysRevB.61.6617
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals, This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.
引用
收藏
页码:6617 / 6630
页数:14
相关论文
共 80 条
[1]  
ACKERMANN RJ, 1977, J AM CERAM SOC, V60, P341, DOI 10.1111/j.1151-2916.1977.tb15557.x
[2]  
ACKERMANN RJ, 1975, HIGH TEMP SCI, V7, P304
[3]   THE CRYSTAL STRUCTURE OF ZRO2 AND HFO2 [J].
ADAM, J ;
ROGERS, MD .
ACTA CRYSTALLOGRAPHICA, 1959, 12 (11) :951-951
[4]   STRUCTURE AND IONIC MOBILITY OF ZIRCONIA AT HIGH-TEMPERATURE [J].
ALDEBERT, P ;
TRAVERSE, JP .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (01) :34-40
[5]  
ANDERSEN OK, 1984, NATO ASI SER B-PHYS, V113, P11
[6]   SYMMETRY CONSIDERATIONS ON MARTENSITIC TRANSFORMATIONS - FERROELECTRIC METALS [J].
ANDERSON, PW ;
BLOUNT, EI .
PHYSICAL REVIEW LETTERS, 1965, 14 (07) :217-&
[7]  
[Anonymous], 1981, SCI TECHNOLOGY ZIRCO
[8]   Semiconductor effective charges from tight-binding theory [J].
Bennetto, J ;
Vanderbilt, D .
PHYSICAL REVIEW B, 1996, 53 (23) :15417-15420
[9]   FINITE STRAIN ISOTHERM AND VELOCITIES FOR SINGLE-CRYSTAL AND POLYCRYSTALLINE NACL AT HIGH-PRESSURES AND 300-DEGREE-K [J].
BIRCH, F .
JOURNAL OF GEOPHYSICAL RESEARCH, 1978, 83 (NB3) :1257-1268
[10]   PRESSURE-TEMPERATURE PHASE-DIAGRAM OF ZIRCONIA [J].
BLOCK, S ;
DAJORNADA, JAH ;
PIERMARINI, GJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (09) :497-499