Quantum superposition at the half-metre scale

被引:281
作者
Kovachy, T. [1 ]
Asenbaum, P. [1 ]
Overstreet, C. [1 ]
Donnelly, C. A. [1 ]
Dickerson, S. M. [1 ]
Sugarbaker, A. [1 ]
Hogan, J. M. [1 ]
Kasevich, M. A. [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
CHOICE GEDANKEN EXPERIMENT; ATOMIC INTERFEROMETRY; LIGHT; TIME;
D O I
10.1038/nature16155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale(1), as exemplified by the thought experiment of Schrodinger's cat(2). Matter-wave interferometers(3), which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales(4) and explore the transition to classical physics(5). In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence(1). Here we use light-pulse atom interferometry(6,7) to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle(8-12), measure the gravitational Aharonov-Bohm effect(13), and eventually detect gravitational waves(14) and phase shifts associated with general relativity(12).
引用
收藏
页码:530 / +
页数:10
相关论文
共 44 条
  • [1] Arndt M, 2014, NAT PHYS, V10, P271, DOI [10.1038/nphys2863, 10.1038/NPHYS2863]
  • [2] EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS
    ASPECT, A
    DALIBARD, J
    ROGER, G
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (25) : 1804 - 1807
  • [3] Models of wave-function collapse, underlying theories, and experimental tests
    Bassi, Angelo
    Lochan, Kinjalk
    Satin, Seema
    Singh, Tejinder P.
    Ulbricht, Hendrik
    [J]. REVIEWS OF MODERN PHYSICS, 2013, 85 (02) : 471 - 527
  • [4] Simultaneous dual-species matter-wave accelerometer
    Bonnin, A.
    Zahzam, N.
    Bidel, Y.
    Bresson, A.
    [J]. PHYSICAL REVIEW A, 2013, 88 (04):
  • [5] ATOMIC INTERFEROMETRY WITH INTERNAL STATE LABELING
    BORDE, CJ
    [J]. PHYSICS LETTERS A, 1989, 140 (1-2) : 10 - 12
  • [6] OBSERVATION OF OPTICAL RAMSEY FRINGES IN THE 10-MU-M SPECRTAL REGION USING A SUPERSONIC BEAM OF SF6
    BORDE, CJ
    AVRILLIER, S
    VANLERBERGHE, A
    SALOMON, C
    BASSI, D
    SCOLES, G
    [J]. JOURNAL DE PHYSIQUE, 1981, 42 (NC8): : 15 - 19
  • [7] Matter-wave interferometer for large molecules -: art. no. 100404
    Brezger, B
    Hackermüller, L
    Uttenthaler, S
    Petschinka, J
    Arndt, M
    Zeilinger, A
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (10) : 4
  • [8] Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals
    Chiow, Sheng-wey
    Kovachy, Tim
    Hogan, Jason M.
    Kasevich, Mark A.
    [J]. OPTICS LETTERS, 2012, 37 (18) : 3861 - 3863
  • [9] 102(h)over-bark Large Area Atom Interferometers
    Chiow, Sheng-wey
    Kovachy, Tim
    Chien, Hui-Chun
    Kasevich, Mark A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (13)
  • [10] Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics
    Chung, Keng-Yeow
    Chiow, Sheng-wey
    Herrmann, Sven
    Chu, Steven
    Mueller, Holger
    [J]. PHYSICAL REVIEW D, 2009, 80 (01):