Temperature Measurement in Plasmonic Nanoapertures Used for Optical Trapping

被引:64
作者
Jiang, Quanbo [1 ]
Rogez, Benoit [1 ]
Claude, Jean-Benoit [1 ]
Baffou, Guillaume [1 ]
Wenger, Jerome [1 ]
机构
[1] Aix Marseille Univ, CNRS, Inst Fresnel, Cent Marseille, F-13013 Marseille, France
来源
ACS PHOTONICS | 2019年 / 6卷 / 07期
基金
欧洲研究理事会;
关键词
plasmonics; nano-optical trapping; optical tweezers; temperature measurements; nanoaperture; double nanohole; zero-mode waveguide; FLUORESCENCE CORRELATION SPECTROSCOPY; SINGLE-MOLECULE FLUORESCENCE; NANO-OBJECTS; NANOPARTICLES; NANOSTRUCTURES; EXCITATION; EFFICIENCY; ANTENNAS; ENHANCE;
D O I
10.1021/acsphotonics.9b00519
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonic nanoapertures generate strong field gradients enabling efficient optical trapping of nano-objects. However, because the infrared laser used for trapping is also partly absorbed into the metal leading to Joule heating, plasmonic nano-optical tweezers face the issue of local temperature increase. Here, we develop three independent methods based on molecular fluorescence to quantify the temperature increase induced by a 1064 nm trapping beam focused on single and double nanoholes milled in gold films. We show that the temperature in the nanohole can be increased by 10 degrees C even at the moderate intensities of 2 mW/mu m(2) used for nano-optical trapping. The temperature gain is found to be largely governed by the ohmic losses into the metal layer, independently of the aperture size, double-nanohole gap, or laser polarization. The techniques developed therein can be readily extended to other structures to improve our understanding of nano-optical tweezers and explore heat-controlled chemical reactions in nanoapertures.
引用
收藏
页码:1763 / 1773
页数:21
相关论文
共 67 条
[1]   A Label-Free Untethered Approach to Single-Molecule Protein Binding Kinetics [J].
Al Balushi, Ahmed A. ;
Gordon, Reuven .
NANO LETTERS, 2014, 14 (10) :5787-5791
[2]   Label-Free Free-Solution Single-Molecule Protein Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping [J].
Al Balushi, Ahmed A. ;
Gordon, Reuven .
ACS PHOTONICS, 2014, 1 (05) :389-393
[3]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[4]  
Baffou G., 2017, THERMOPLASMONICS
[5]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[6]   Mapping Heat Origin in Plasmonic Structures [J].
Baffou, Guillaume ;
Girard, Christian ;
Quidant, Romain .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[7]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[8]  
Berthelot J, 2014, NAT NANOTECHNOL, V9, P295, DOI [10.1038/nnano.2014.24, 10.1038/NNANO.2014.24]
[9]   Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature [J].
Bidault, Sebastien ;
Devilez, Alexis ;
Maillard, Vincent ;
Lermusiaux, Laurent ;
Guigner, Jean-Michel ;
Bonod, Nicolas ;
Wenger, Jerome .
ACS NANO, 2016, 10 (04) :4806-4815
[10]   Optically Controlled Thermophoretic Trapping of Single Nano-Objects [J].
Braun, Marco ;
Cichos, Frank .
ACS NANO, 2013, 7 (12) :11200-11208