Endpoint regularity criterion for weak solutions of the 3D incompressible liquid crystals system

被引:2
作者
Men, Yueyang [1 ]
Wang, Wendong [2 ,3 ]
Wu, Gang [4 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[3] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
backward uniqueness; liquid crystals system; regularity criterion; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; FLOW; UNIQUENESS;
D O I
10.1002/mma.4854
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the endpoint case regularity for the 3D liquid crystals system. We prove that if vL(0,T;L3(R3)), then weak solution (v,d) is smooth, and our main observation is that the condition delta dL(0,T;L3(R3)) is not necessary in this situation. The proof is based on the blow-up analysis and backward uniqueness for the parabolic operator developed by Escauriaza-Seregin-Sverak.
引用
收藏
页码:3672 / 3683
页数:12
相关论文
共 16 条
[1]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[2]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[3]   Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics [J].
Friedlander, Susan ;
Vicol, Vlad .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02) :283-301
[4]  
Hineman JL, 2013, ARCH RATION MECH AN, V210, P177, DOI 10.1007/s00205-013-0643-7
[5]   Global existence of solutions of the simplified Ericksen-Leslie system in dimension two [J].
Hong, Min-Chun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) :15-36
[6]   Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals [J].
Huang, Tao .
ANALYSIS AND APPLICATIONS, 2016, 14 (04) :523-536
[7]  
Lin F., 1996, DISC CONTIN DYN SYST, V2, P1, DOI DOI 10.3934/dcds.1996.2.1
[8]   Liquid Crystal Flows in Two Dimensions [J].
Lin, Fanghua ;
Lin, Junyu ;
Wang, Changyou .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) :297-336
[9]   NONPARABOLIC DISSIPATIVE SYSTEMS MODELING THE FLOW OF LIQUID-CRYSTALS [J].
LIN, FH ;
LIU, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (05) :501-537
[10]  
Lin FH, 2016, COMMUN PUR APPL MATH, V69, P101