Proton acceleration in a laser-induced relativistic electron vortex

被引:3
|
作者
Yi, L. Q. [1 ]
Pusztai, I [1 ]
Pukhov, A. [2 ]
Shen, B. F. [3 ]
Fulop, T. [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[2] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany
[3] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
plasma applications; plasma dynamics; plasma simulation; ION-ACCELERATION; ULTRAINTENSE; EVOLUTION; VORTICES;
D O I
10.1017/S0022377819000485
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that when a solid plasma foil with a density gradient on the front surface is irradiated by an intense laser pulse at a grazing angle, similar to 80 degrees, a relativistic electron vortex is excited in the near-critical-density layer after the laser pulse depletion. The vortex structure and dynamics are studied using particle-in-cell simulations. Due to the asymmetry introduced by non-uniform background density, the vortex drifts at a constant velocity, typically 0.2-0.3 times the speed of light. The strong magnetic field inside the vortex leads to significant charge separation; in the corresponding electric field initially stationary protons can be captured and accelerated to twice the velocity of the vortex (100-200 MeV). A representative scenario - with laser intensity of 10(21) W cm(-2) - is discussed: two-dimensional simulations suggest that a quasi-monoenergetic proton beam can be obtained with a mean energy 140 MeV and an energy spread of similar to 10% We derive an analytical estimate for the vortex velocity in terms of laser and plasma parameters, demonstrating that the maximum proton energy can be controlled by the incidence angle of the laser and the plasma density gradient.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Effects of laser prepulses on laser-induced proton generation
    Batani, D.
    Jafer, R.
    Veltcheva, M.
    Dezulian, R.
    Lundh, O.
    Lindau, F.
    Persson, A.
    Osvay, K.
    Wahlstrom, C-G
    Carroll, D. C.
    McKenna, P.
    Flacco, A.
    Malka, V.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [42] PROMPT PROTON AND ELECTRON ACCELERATION TO RELATIVISTIC ENERGIES IN SOLAR-FLARES
    OHSAWA, Y
    SAKAI, JI
    SOLAR PHYSICS, 1988, 116 (01) : 157 - 162
  • [43] Hybrid proton acceleration scheme using relativistic intense laser light
    Andreev, A. A.
    Platonov, K. Yu
    Schnuerer, M.
    Prasad, R.
    Ter-Avetisyan, S.
    PHYSICS OF PLASMAS, 2013, 20 (03)
  • [44] Laser induced electron acceleration in vacuum
    Singh, KP
    PHYSICS OF PLASMAS, 2004, 11 (03) : 1164 - 1167
  • [45] Investigation of relativistic intensity laser generated hot electron dynamics via copper Kα imaging and proton acceleration
    Willingale, L.
    Thomas, A. G. R.
    Maksimchuk, A.
    Morace, A.
    Bartal, T.
    Kim, J.
    Stephens, R. B.
    Wei, M. S.
    Beg, F. N.
    Krushelnick, K.
    PHYSICS OF PLASMAS, 2013, 20 (12)
  • [46] Surface electron acceleration in relativistic laser-solid interactions
    Chen, M
    Sheng, ZM
    Zheng, J
    Ma, YY
    Bari, MA
    Li, YT
    Zhang, J
    OPTICS EXPRESS, 2006, 14 (07): : 3093 - 3098
  • [47] Channeling of Relativistic Laser Pulses, Surface Waves, and Electron Acceleration
    Naseri, N.
    Pesme, D.
    Rozmus, W.
    Popov, K.
    PHYSICAL REVIEW LETTERS, 2012, 108 (10)
  • [48] Electron acceleration in dense plasmas heated by a picosecond relativistic laser
    Iwata, N.
    Sentoku, Y.
    Sano, T.
    Mima, K.
    NUCLEAR FUSION, 2019, 59 (08)
  • [49] Hollow high-quality electron beam generation by cyclotron autoresonance in laser-induced acceleration
    Hashemian, S. H.
    Akou, H.
    OPTIK, 2020, 202
  • [50] Physics and applications with laser-induced relativistic shock waves
    S.Eliezer
    J.M.Martinez-Val
    Z.Henis
    N.Nissim
    S.V.Pinhasi
    A.Ravid
    M.Werdiger
    E.Raicher
    HighPowerLaserScienceandEngineering, 2016, 4 (03) : 46 - 59