Proton acceleration in a laser-induced relativistic electron vortex

被引:3
|
作者
Yi, L. Q. [1 ]
Pusztai, I [1 ]
Pukhov, A. [2 ]
Shen, B. F. [3 ]
Fulop, T. [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[2] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany
[3] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
plasma applications; plasma dynamics; plasma simulation; ION-ACCELERATION; ULTRAINTENSE; EVOLUTION; VORTICES;
D O I
10.1017/S0022377819000485
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that when a solid plasma foil with a density gradient on the front surface is irradiated by an intense laser pulse at a grazing angle, similar to 80 degrees, a relativistic electron vortex is excited in the near-critical-density layer after the laser pulse depletion. The vortex structure and dynamics are studied using particle-in-cell simulations. Due to the asymmetry introduced by non-uniform background density, the vortex drifts at a constant velocity, typically 0.2-0.3 times the speed of light. The strong magnetic field inside the vortex leads to significant charge separation; in the corresponding electric field initially stationary protons can be captured and accelerated to twice the velocity of the vortex (100-200 MeV). A representative scenario - with laser intensity of 10(21) W cm(-2) - is discussed: two-dimensional simulations suggest that a quasi-monoenergetic proton beam can be obtained with a mean energy 140 MeV and an energy spread of similar to 10% We derive an analytical estimate for the vortex velocity in terms of laser and plasma parameters, demonstrating that the maximum proton energy can be controlled by the incidence angle of the laser and the plasma density gradient.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Proton and electron acceleration through magnetic turbulence in relativistic outflows
    Schlickeiser, R
    Dermer, CD
    ASTRONOMY & ASTROPHYSICS, 2000, 360 (02) : 789 - 794
  • [32] Amplification of Relativistic Electron Bunches by Acceleration in Laser Fields
    Braenzel, J.
    Andreev, A. A.
    Abicht, F.
    Ehrentraut, L.
    Platonov, K.
    Schnuerer, M.
    PHYSICAL REVIEW LETTERS, 2017, 118 (01)
  • [33] RELATIVISTIC DERIVATION OF LASER-INDUCED PLASMA PROFILES
    STROSCIO, MA
    LEE, K
    LINDMAN, EL
    PHYSICS OF FLUIDS, 1978, 21 (09) : 1509 - 1512
  • [34] LASER-INDUCED PARTICLE-ACCELERATION IN PLASMAS
    MORA, P
    AMIRANOFF, F
    BENKHEIRI, P
    JACQUET, F
    MATTHIEUSSENT, G
    MINE, P
    ROUSSEAUX, C
    ANNALES DE PHYSIQUE, 1990, 15 (03) : 27 - 31
  • [35] RELATIVISTIC DERIVATION OF LASER-INDUCED PLASMA PROFILES
    STROSCIO, MA
    LINDMAN, EL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1182 - 1182
  • [36] ACCELERATION OF MICROPARTICLES BY LASER-INDUCED VAPOR EMISSION
    WANIEK, RW
    JARMUZ, PJ
    APPLIED PHYSICS LETTERS, 1968, 12 (02) : 52 - &
  • [37] Effect of laser-induced double-step ionization of a gas on vacuum electron acceleration
    Gupta, Devki Nandan
    Jang, Hyo Jae
    Suk, Hyyong
    APPLIED PHYSICS LETTERS, 2009, 94 (02)
  • [38] Characteristics of multimode combined intense laser-induced electron acceleration and violet bunch compression
    Wang, P.X. (pxwom@yahoo.com), 1600, American Institute of Physics Inc. (95):
  • [39] Characteristics of multimode combined intense laser-induced electron acceleration and violent bunch compression
    Huang, SJ
    Tang, CX
    Wang, PX
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (04) : 2163 - 2171
  • [40] Isolated spin polarized hydrogen atoms as targets for laser-induced polarized electron acceleration
    Sofikitis, Dimitris
    Stamatakis, Marios G.
    Papazoglou, Dimitrios G.
    Rakitzis, T. Peter
    FRONTIERS IN PHYSICS, 2024, 12