The Particle Induced Mode Splitting and Exceptional Points in Whispering-Gallery Mode Microcavity

被引:3
作者
Xiao-Xue, Jin [1 ,2 ,3 ,4 ]
Gao, Yong-Pan [1 ,2 ,3 ,4 ]
Shi-Hui, Zheng [1 ,2 ,3 ,4 ]
Wang, Tie-Jun [1 ,2 ,3 ,4 ]
Wang, Chuan [1 ,2 ,3 ,4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
[4] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 06期
基金
中国国家自然科学基金;
关键词
Whispering gallery mode; exceptional point; mode splitting; LABEL-FREE DETECTION; NANOPARTICLES; MICROSPHERE; MICRORESONATORS;
D O I
10.1109/JPHOT.2020.3030702
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The manipulation of optical modes is an important issue for the realization of sensors in microcavities. In this paper, the generation and modulation of mode splitting in optical microcavities is studied by controlling the axes of an ellipsoidal nanoparticle. Different from the previous schemes, mode splitting and mode broadening caused by ellipsoidal particle scattering are related to the axial orientation of the particle. Therefore, unlike the scheme in which the relative position of the bi-spherical particles must be adjusted to modulate the relative coupling phase, the coupling strength and dissipation of the mode could be tuned by controlling the axial orientation of the ellipsoidal particle in our scheme. Furthermore, it can also tune the system to the exceptional points. This provides a novel way to manipulate the exceptional points in the whispering-gallery mode microcavity.
引用
收藏
页数:14
相关论文
共 72 条
[11]   Quantum-information processing in decoherence-free subspace with low-Q cavities [J].
Chen, Qiong ;
Feng, Mang .
PHYSICAL REVIEW A, 2010, 82 (05)
[12]   Exceptional points enhance sensing in an optical microcavity [J].
Chen, Weijian ;
Ozdemir, Sahin Kaya ;
Zhao, Guangming ;
Wiersig, Jan ;
Yang, Lan .
NATURE, 2017, 548 (7666) :192-+
[13]   Multinanoparticle scattering in a multimode microspheroid resonator [J].
Chen, You-Ling ;
Huang, Yong-Zhen .
PHYSICAL REVIEW A, 2019, 99 (02)
[14]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[15]   Photoelastic ultrasound detection using ultra-high-Q silica optical resonators [J].
Chistiakova, Maria V. ;
Armani, Andrea M. .
OPTICS EXPRESS, 2014, 22 (23) :28169-28179
[16]   Quantum computing with trapped ions in an optical cavity via Raman transition [J].
Feng, M .
PHYSICAL REVIEW A, 2002, 66 (05) :4
[17]   ELECTRIC-FIELD AND TEMPERATURE TUNING OF EXCITON-PHOTON COUPLING IN QUANTUM MICROCAVITY STRUCTURES [J].
FISHER, TA ;
AFSHAR, AM ;
WHITTAKER, DM ;
SKOLNICK, MS ;
ROBERTS, JS ;
HILL, G ;
PATE, MA .
PHYSICAL REVIEW B, 1995, 51 (04) :2600-2603
[18]   Whispering gallery mode sensors [J].
Foreman, Matthew R. ;
Swaim, Jon D. ;
Vollmer, Frank .
ADVANCES IN OPTICS AND PHOTONICS, 2015, 7 (02) :168-240
[19]   Photon excitation and photon-blockade effects in optomagnonic microcavities [J].
Gao, Yong-Pan ;
Liu, Xiao-Fei ;
Wang, Tie-Jun ;
Cao, Cong ;
Wang, Chuan .
PHYSICAL REVIEW A, 2019, 100 (04)
[20]   Cavity-mediated coupling of phonons and magnons [J].
Gao, Yong-Pan ;
Cao, Cong ;
Wang, Tie-Jun ;
Zhang, Yong ;
Wang, Chuan .
PHYSICAL REVIEW A, 2017, 96 (02)