Global Small data Solutions for a system of semilinear heat equations and the corresponding system of damped wave equations with nonlinear memory

被引:0
作者
Berbiche, Mohamed [1 ]
Terchi, Messaouda [1 ]
机构
[1] Univ Biskra, Lab Math Anal Probabil & Optimizat, POB 145, Biskra 07000, Algeria
关键词
Parabolic system; damped wave system; global existence; critical exponent; FUJITA CRITICAL EXPONENT; BLOW-UP; CAUCHY-PROBLEM; R-N; EXISTENCE; ASYMPTOTICS; BEHAVIOR; SPACE;
D O I
10.21494/ISTE.OP.2020.0555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for a strongly coupled semi-linear heat equations with some kind of nonlinearity in multi-dimensional space R-N. We see under some conditions on the exponents and on the dimension N, that the existence and uniqueness of time-global solutions for small data and their asymptotic behaviors are obtained. This observation will be applied to the corresponding system of the damped wave equations in low dimensional space.
引用
收藏
页码:57 / 87
页数:31
相关论文
共 44 条
[11]   CRITICAL BLOWUP AND GLOBAL EXISTENCE NUMBERS FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS [J].
ESCOBEDO, M ;
LEVINE, HA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) :47-100
[12]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[13]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[14]   FINITE DIFFERENCE METHOD FOR ANALYZING COMPRESSION OF PORO-VISCOELASTIC MEDIA [J].
HABETLER, GJ ;
SCHIFFMAN, RL .
COMPUTING, 1970, 6 (3-4) :342-+
[15]   Large time behavior and Lp-Lq estimate of solutions of 2-dimensional nonlinear damped wave equations [J].
Hosono, T ;
Ogawa, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 203 (01) :82-118
[16]   Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data [J].
Ikehata, R ;
Tanizawa, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (07) :1189-1208
[17]   Decay estimates of solutions for dissipative wave equations in RN with lower power nonlinearities [J].
Ikehata, R ;
Miyaoka, Y ;
Nakatake, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (02) :365-373
[18]   Selfsimilar profiles in large time asymptotics of solutions to damped wave equations [J].
Karch, G .
STUDIA MATHEMATICA, 2000, 143 (02) :175-197
[19]  
KASTENBERG WE, 1968, NUKLEONIK, V11, P126
[20]   ON THE DECAY PROPERTY OF SOLUTIONS TO THE CAUCHY-PROBLEM OF THE SEMILINEAR WAVE-EQUATION WITH A DISSIPATIVE TERM [J].
KAWASHIMA, S ;
NAKAO, M ;
ONO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1995, 47 (04) :617-653