Approximate Maximum Likelihood method for frequency estimation

被引:0
|
作者
Huang, DW [1 ]
机构
[1] Queensland Univ Technol, Sch Math, Brisbane, Qld 4001, Australia
关键词
Approximate Maximum Likelihood; discrete Fourier transform; efficiency; fast algorithm; frequency estimation; semi-sufficient statistics;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A frequency can be estimated by few Discrete Fourier Transform (DFT) coefficients, see Rife and Vincent (1970), Quinn (1994, 1997). This approach is computationally efficient. However, the statistical efficiency of the estimator depends on the location of the frequency. In this paper, we explain this approach fi om a point of view of an Approximate Maximum Likelihood (AML) method. Then we enhance the efficiency of this method by using more DFT coefficients. Compared to 30% and 61% efficiency in the worst cases in Quinn (1994) and Quinn (1997). respectively, we show that if 13 or 25 DFT coefficients are used, AML will achieve at least 90% or 95% efficiency for all frequency locations.
引用
收藏
页码:157 / 171
页数:15
相关论文
共 50 条
  • [1] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [2] Approximate maximum likelihood estimation of integer carrier frequency offset in OFDM systems
    Lee, J
    Lou, HL
    Toumpakaris, D
    ICC 2005: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-5, 2005, : 2543 - 2547
  • [3] An Approximate Maximum Likelihood Estimator for Instantaneous Frequency Estimation of Multicomponent Nonstationary Signals
    Liu, Yang
    Sun, Yuxin
    Xiong, Zhenhua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Approximate maximum likelihood estimation of the Bingham distribution
    Bee, Marco
    Benedetti, Roberto
    Espa, Giuseppe
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 108 : 84 - 96
  • [5] Approximate maximum likelihood estimation in nonhomogeneous diffusions
    Bishwal, Jaya P. N.
    PARAMETER ESTIMATION IN STOCHASTIC DIFFERENTIAL EQUATION, 2008, 1923 : 125 - 157
  • [6] ON THE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR DIFFUSION PROCESSES
    Chang, Jinyuan
    Chen, Song Xi
    ANNALS OF STATISTICS, 2011, 39 (06): : 2820 - 2851
  • [7] Approximate Maximum Likelihood Estimation of Circle Parameters
    Y. T. Chan
    B. H. Lee
    S. M. Thomas
    Journal of Optimization Theory and Applications, 2005, 125 : 723 - 734
  • [8] Approximate maximum likelihood estimation of circle parameters
    Chan, YGT
    Lee, BH
    Thomas, SM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (03) : 723 - 734
  • [9] Approximate maximum likelihood estimation of the autologistic model
    Bee, Marco
    Espa, Giuseppe
    Giuliani, Diego
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 14 - 26
  • [10] Approximate maximum likelihood time differences estimation in the presence of frequency and phase consistence errors
    Zhong, Sen
    Xia, Wei
    He, Zishu
    2013 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (IEEE ISSPIT 2013), 2013, : 305 - 308