Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type

被引:9
作者
Keyantuo, Valentin [1 ]
Lizama, Carlos [2 ]
Rueda, Silvia [2 ]
Warma, Mahamadi [1 ]
机构
[1] Univ Puerto Rico, Dept Math, Fac Nat Sci, San Juan, PR 00936 USA
[2] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Fac Ciencias, Santiago, Chile
关键词
Weighted pseudo asymptotically mild solutions; Abstract difference equations; Resolvent sequences of operators; DISCRETE MAXIMAL REGULARITY; STABILITY; SYSTEM; MODEL;
D O I
10.1186/s13662-019-2189-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of a weighted pseudo asymptotically mild solution to the following class of abstract semilinear difference equations: where A is the generator of a resolvent sequence {S(n)}nN0 of bounded and linear operators defined in a Banach space X, the sequences a,b are complex-valued, and fl1(ZxX,X).
引用
收藏
页数:29
相关论文
共 35 条
  • [1] Almost automorphic mild solutions to fractional partial difference-differential equations
    Abadias, Luciano
    Lizama, Carlos
    [J]. APPLICABLE ANALYSIS, 2016, 95 (06) : 1347 - 1369
  • [2] On the asymptotic stability of linear system of fractional-order difference equations
    Abu-Saris, Raghib
    Al-Mdallal, Qasem
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 613 - 629
  • [3] AGARWAL R. P., 2014, Regularity of Difference Equations on Banach Spaces
  • [4] Almost automorphy profile of solutions for difference equations of Volterra type
    Agarwal R.P.
    Cuevas C.
    Dantas F.
    [J]. Journal of Applied Mathematics and Computing, 2013, 42 (1-2) : 1 - 18
  • [5] Alvarez E, 2016, ELECTRON J DIFFER EQ
  • [6] [Anonymous], 2003, FIXED POINT THEOR-RO, DOI DOI 10.1007/978-0-387-21593-8
  • [7] [Anonymous], 1980, FUNCTIONAL ANAL
  • [8] Almost Automorphic Solutions of Difference Equations
    Araya, Daniela
    Castro, Rodrigo
    Lizama, Carlos
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [9] Atici FM, 2009, P AM MATH SOC, V137, P981
  • [10] Bateman H., 1943, B AM MATH SOC, V49, P494, DOI DOI 10.1090/S0002-9904-1943-07927-X