Nuclear liquid-gas phase transition with machine learning

被引:64
作者
Wang, Rui [1 ,2 ]
Ma, Yu-Gang [1 ,2 ]
Wada, R. [3 ]
Chen, Lie-Wen [4 ,5 ]
He, Wan-Bing [1 ]
Liu, Huan-Ling [2 ]
Sun, Kai-Jia [3 ,6 ]
机构
[1] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[3] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China
[6] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
基金
中国国家自然科学基金;
关键词
Gases - Unsupervised learning - Liquefied gases - Phase transitions - Learning algorithms;
D O I
10.1103/PhysRevResearch.2.043202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine-learning techniques have shown their capability for studying phase transitions in condensed matter physics. Here, we employ machine-learning techniques to study the nuclear liquid-gas phase transition. We adopt an unsupervised learning and classify the liquid and gas phases of nuclei directly from the final-state raw experimental data of heavy-ion reactions. Based on a confusion scheme which combines the supervised and unsupervised learning, we obtain the limiting temperature of the nuclear liquid-gas phase transition. Its value 9.24 +/- 0.04 MeV is consistent with that obtained by the traditional caloric curve method. Our study explores the paradigm of combining machine-learning techniques with heavy-ion experimental data, and it is also instructive for studying the phase transition of other uncontrollable systems, such as QCD matter.
引用
收藏
页数:8
相关论文
共 49 条
[1]  
[Anonymous], 2015, Deep learn. nat., DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[2]  
[Anonymous], 2015, ACS SYM SER
[3]   Searching for exotic particles in high-energy physics with deep learning [J].
Baldi, P. ;
Sadowski, P. ;
Whiteson, D. .
NATURE COMMUNICATIONS, 2014, 5
[4]   PHASE-TRANSITIONS OF STORED LASER-COOLED IONS [J].
BLUMEL, R ;
CHEN, JM ;
PEIK, E ;
QUINT, W ;
SCHLEICH, W ;
SHEN, YR ;
WALTHER, H .
NATURE, 1988, 334 (6180) :309-313
[5]   Quantum nature of a nuclear phase transition [J].
Bonasera, A. ;
Chen, Z. ;
Wada, R. ;
Hagel, K. ;
Natowitz, J. ;
Sahu, P. ;
Qin, L. ;
Kowalski, S. ;
Keutgen, Th. ;
Materna, T. ;
Nakagawa, T. .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[6]   Liquid-Gas phase transition in nuclei [J].
Borderie, B. ;
Frankland, J. D. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2019, 105 :82-138
[7]   Universal fluctuations in heavy-ion collisions in the Fermi energy domain [J].
Botet, R ;
Ploszajczak, M ;
Chbihi, A ;
Borderie, B ;
Durand, D ;
Frankland, J .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3514-3517
[8]   AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION [J].
BOURLARD, H ;
KAMP, Y .
BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) :291-294
[9]   Constraining Effective Field Theories with Machine Learning [J].
Brehmer, Johann ;
Cranmer, Kyle ;
Louppe, Gilles ;
Pavez, Juan .
PHYSICAL REVIEW LETTERS, 2018, 121 (11)
[10]   ROOT - An object oriented data analysis framework [J].
Brun, R ;
Rademakers, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2) :81-86